Skip to content

Commit 7efa1b2

Browse files
authored
Update README.md
1 parent 789a602 commit 7efa1b2

File tree

1 file changed

+4
-1
lines changed

1 file changed

+4
-1
lines changed

README.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,7 @@ A tiny, friendly, strong baseline code for Object-reID (based on [pytorch](https
1616
Besides, if you are new to object re-ID, you may check out our **[Tutorial](https://github.com/layumi/Person_reID_baseline_pytorch/tree/master/tutorial)** first (8 min read) :+1: .
1717
![](https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/show.png)
1818
![](https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/show-cub.jpg)
19+
1920
## Tutorial
2021
* [8 min Tutorial](https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/tutorial/README.md)[8分钟教程](https://zhuanlan.zhihu.com/p/50387521)
2122
* [中文视频简介](https://www.bilibili.com/video/BV11K4y1f7eQ)
@@ -41,7 +42,7 @@ Now we have supported:
4142
- Running the code on Google Colab with Free GPU. Check [Here](https://github.com/layumi/Person_reID_baseline_pytorch/tree/master/colab) (Thanks to @ronghao233)
4243
- [DG-Market](https://github.com/NVlabs/DG-Net#dg-market) (10x Large Synethic Dataset from Market **CVPR 2019 Oral**)
4344
- [Swin Transformer](https://github.com/microsoft/Swin-Transformer) / [EfficientNet](https://github.com/lukemelas/EfficientNet-PyTorch) / [HRNet](https://github.com/HRNet)
44-
- Circle Loss (**CVPR 2020 Oral**)
45+
- Circle Loss (**CVPR 2020 Oral**), Triplet Loss, Contrastive Loss, Sphere Loss, Lifted Loss and Instance Loss
4546
- Float16 to save GPU memory based on [apex](https://github.com/NVIDIA/apex)
4647
- Part-based Convolutional Baseline(PCB)
4748
- Multiple Query Evaluation
@@ -66,6 +67,8 @@ Different framework need to be tuned in a different way.
6667
<summary><b>
6768
2021 News
6869
</b></summary>
70+
71+
**30 Dec 2021** We add supports for new losses, including arcface loss, cosface loss and instance loss. The hyper-parameters are still tunning.
6972

7073
**3 Dec 2021** We add supports for four losses, including triplet loss, contrastive loss, sphere loss and lifted loss. The hyper-parameters are still tunning.
7174

0 commit comments

Comments
 (0)