|
| 1 | +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +you may not use this file except in compliance with the License. |
| 4 | +You may obtain a copy of the License at |
| 5 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +Unless required by applicable law or agreed to in writing, software |
| 7 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +See the License for the specific language governing permissions and |
| 10 | +limitations under the License. */ |
| 11 | + |
| 12 | +#pragma once |
| 13 | + |
| 14 | +#include "paddle/fluid/operators/fused/attn_bias_add.cu.h" |
| 15 | +#include "paddle/fluid/operators/math/blas.h" |
| 16 | +#include "paddle/fluid/platform/float16.h" |
| 17 | + |
| 18 | +namespace paddle { |
| 19 | +namespace operators { |
| 20 | + |
| 21 | +// support gemm-nt and gemm-nn, which is used in fused_attention_op. |
| 22 | +template <typename T> |
| 23 | +class AttnMatMul { |
| 24 | + public: |
| 25 | + // (m, n, k) = bsz_seq, output_size, input_size |
| 26 | + AttnMatMul(const platform::CUDADeviceContext& dev_ctx, bool transA, |
| 27 | + bool transB, int bsz_seq, int output_size, int input_size, |
| 28 | + bool compute_bias) |
| 29 | + : dev_ctx_(dev_ctx), |
| 30 | + transA_(transA), |
| 31 | + transB_(transB), |
| 32 | + bsz_seq_(bsz_seq), |
| 33 | + output_size_(output_size), |
| 34 | + input_size_(input_size), |
| 35 | + compute_bias_(compute_bias) {} |
| 36 | + |
| 37 | + ~AttnMatMul() {} |
| 38 | + |
| 39 | + void ComputeForward(const T* weight_data, const T* input_data, |
| 40 | + const T* bias_data, T* output_data, T* bias_out_data) { |
| 41 | + // Note: for blas.GEMM API in Paddle, it treats all inputs as row-major. |
| 42 | + // here: (transa, transb): nt, input * weight. |
| 43 | + CBLAS_TRANSPOSE transA = CblasNoTrans; |
| 44 | + CBLAS_TRANSPOSE transB = CblasNoTrans; |
| 45 | + if (transA_) { |
| 46 | + transA = CblasTrans; |
| 47 | + } |
| 48 | + if (transB_) { |
| 49 | + transB = CblasTrans; |
| 50 | + } |
| 51 | + T alpha = static_cast<T>(1.0); |
| 52 | + T beta = static_cast<T>(0.0); |
| 53 | + |
| 54 | + // here: (m, n, k) = bsz_seq, output_size, input_size, (input, weight, out) |
| 55 | + auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_); |
| 56 | + blas.GEMM(transA, transB, bsz_seq_, output_size_, input_size_, alpha, |
| 57 | + input_data, weight_data, beta, output_data); |
| 58 | + if (compute_bias_) { |
| 59 | + // compute output + bias |
| 60 | + LaunchBiasAddFwKernel(dev_ctx_, bsz_seq_, output_size_, output_data, |
| 61 | + bias_data, bias_out_data); |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + void ComputeBackward(const T* input, const T* weight, const T* d_output, |
| 66 | + T* d_input, T* d_weight, T* d_bias) { |
| 67 | + T alpha = static_cast<T>(1.0); |
| 68 | + T beta = static_cast<T>(0.0); |
| 69 | + auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_); |
| 70 | + |
| 71 | + CBLAS_TRANSPOSE dB_transA = CblasNoTrans; |
| 72 | + CBLAS_TRANSPOSE dB_transB = CblasNoTrans; |
| 73 | + CBLAS_TRANSPOSE dA_transA = CblasNoTrans; |
| 74 | + CBLAS_TRANSPOSE dA_transB = CblasNoTrans; |
| 75 | + int dB_m = 1; |
| 76 | + int dB_n = 1; |
| 77 | + int dB_k = 1; |
| 78 | + int dA_m = 1; |
| 79 | + int dA_n = 1; |
| 80 | + int dA_k = 1; |
| 81 | + |
| 82 | + T* dB_input_1_ptr = nullptr; |
| 83 | + T* dB_input_2_ptr = nullptr; |
| 84 | + T* dB_output_ptr = d_weight; |
| 85 | + |
| 86 | + T* dA_input_1_ptr = nullptr; |
| 87 | + T* dA_input_2_ptr = nullptr; |
| 88 | + T* dA_output_ptr = d_input; |
| 89 | + |
| 90 | + if (!transA_) { |
| 91 | + // fw: gemm-nt |
| 92 | + if (transB_) { |
| 93 | + // bw: gemm-tn, dB = (dC)^t * A |
| 94 | + dB_transA = CblasTrans; |
| 95 | + dB_transB = CblasNoTrans; |
| 96 | + dB_m = output_size_; |
| 97 | + dB_n = input_size_; |
| 98 | + dB_k = bsz_seq_; |
| 99 | + |
| 100 | + // bw: gemm-nn, dA = dC * B |
| 101 | + dA_transA = CblasNoTrans; |
| 102 | + dA_transB = CblasNoTrans; |
| 103 | + dA_m = bsz_seq_; |
| 104 | + dA_n = input_size_; |
| 105 | + dA_k = output_size_; |
| 106 | + |
| 107 | + blas.GEMM(dB_transA, dB_transB, dB_m, dB_n, dB_k, alpha, d_output, |
| 108 | + input, beta, dB_output_ptr); |
| 109 | + blas.GEMM(dA_transA, dA_transB, dA_m, dA_n, dA_k, alpha, d_output, |
| 110 | + weight, beta, dA_output_ptr); |
| 111 | + } else { // fw: gemm-nn |
| 112 | + // bw: gemm-tn, dB = A^t * dC |
| 113 | + dB_transA = CblasTrans; |
| 114 | + dB_transB = CblasNoTrans; |
| 115 | + dB_m = input_size_; |
| 116 | + dB_n = output_size_; |
| 117 | + dB_k = bsz_seq_; |
| 118 | + |
| 119 | + // bw: gemm-nt, dA = dC * B^t |
| 120 | + dA_transA = CblasNoTrans; |
| 121 | + dA_transB = CblasTrans; |
| 122 | + dA_m = bsz_seq_; |
| 123 | + dA_n = input_size_; |
| 124 | + dA_k = output_size_; |
| 125 | + |
| 126 | + blas.GEMM(dB_transA, dB_transB, dB_m, dB_n, dB_k, alpha, input, |
| 127 | + d_output, beta, dB_output_ptr); |
| 128 | + blas.GEMM(dA_transA, dA_transB, dA_m, dA_n, dA_k, alpha, d_output, |
| 129 | + weight, beta, dA_output_ptr); |
| 130 | + } |
| 131 | + } else if (transB_) { |
| 132 | + PADDLE_THROW(platform::errors::InvalidArgument( |
| 133 | + "AttnMatMul wrapper do not support (transA=T, transB=T)" |
| 134 | + "parameters.")); |
| 135 | + } else { |
| 136 | + PADDLE_THROW(platform::errors::InvalidArgument( |
| 137 | + "AttnMatMul wrapper do not support (transA=T, transB=N)" |
| 138 | + "parameters.")); |
| 139 | + } |
| 140 | + if (compute_bias_) { |
| 141 | + LaunchBiasAddBwKernel(dev_ctx_, bsz_seq_, output_size_, d_output, d_bias); |
| 142 | + } |
| 143 | + } |
| 144 | + |
| 145 | + private: |
| 146 | + const platform::CUDADeviceContext& dev_ctx_; |
| 147 | + |
| 148 | + bool transA_; |
| 149 | + bool transB_; |
| 150 | + |
| 151 | + int bsz_seq_; |
| 152 | + int output_size_; |
| 153 | + int input_size_; |
| 154 | + |
| 155 | + int compute_bias_; |
| 156 | +}; |
| 157 | + |
| 158 | +} // namespace operators |
| 159 | +} // namespace paddle |
0 commit comments