Skip to content

Commit 2573cca

Browse files
committed
[VPlan] Compute interleave count for VPlan.
Move selectInterleaveCount to LoopVectorizationPlanner and retrieve some information directly from VPlan. Register pressure was already computed for a VPlan, and with this patch we now also check for reductions directly on VPlan, as well as checking how many load and store operations remain in the loop. This should be mostly NFC, but we may compute slightly different interleave counts, except for some edge cases, e.g. where dead loads have been removed. This shouldn't happen in practice, and the patch doesn't cause changes across a large test corpus on AArch64. Computing the interleave count based on VPlan allows for making better decisions in presence of VPlan optimizations, for example when operations on interleave groups are narrowed. Note that there are a few test changes for tests that were still checking the legacy cost-model output when it was computed in selectInterleaveCount.
1 parent 7596424 commit 2573cca

File tree

6 files changed

+95
-560
lines changed

6 files changed

+95
-560
lines changed

llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -487,6 +487,9 @@ class LoopVectorizationPlanner {
487487
/// all profitable VFs in ProfitableVFs.
488488
VectorizationFactor computeBestVF();
489489

490+
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF,
491+
InstructionCost LoopCost);
492+
490493
/// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
491494
/// according to the best selected \p VF and \p UF.
492495
///

llvm/lib/Transforms/Vectorize/LoopVectorize.cpp

Lines changed: 72 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -955,13 +955,6 @@ class LoopVectorizationCostModel {
955955
/// 64 bit loop indices.
956956
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
957957

958-
/// \return The desired interleave count.
959-
/// If interleave count has been specified by metadata it will be returned.
960-
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
961-
/// are the selected vectorization factor and the cost of the selected VF.
962-
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF,
963-
InstructionCost LoopCost);
964-
965958
/// Memory access instruction may be vectorized in more than one way.
966959
/// Form of instruction after vectorization depends on cost.
967960
/// This function takes cost-based decisions for Load/Store instructions
@@ -4634,8 +4627,8 @@ void LoopVectorizationCostModel::collectElementTypesForWidening() {
46344627
}
46354628

46364629
unsigned
4637-
LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
4638-
InstructionCost LoopCost) {
4630+
LoopVectorizationPlanner::selectInterleaveCount(VPlan &Plan, ElementCount VF,
4631+
InstructionCost LoopCost) {
46394632
// -- The interleave heuristics --
46404633
// We interleave the loop in order to expose ILP and reduce the loop overhead.
46414634
// There are many micro-architectural considerations that we can't predict
@@ -4650,11 +4643,11 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
46504643
// 3. We don't interleave if we think that we will spill registers to memory
46514644
// due to the increased register pressure.
46524645

4653-
if (!isScalarEpilogueAllowed())
4646+
if (!CM.isScalarEpilogueAllowed())
46544647
return 1;
46554648

4656-
// Do not interleave if EVL is preferred and no User IC is specified.
4657-
if (foldTailWithEVL()) {
4649+
if (any_of(Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis(),
4650+
IsaPred<VPEVLBasedIVPHIRecipe>)) {
46584651
LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
46594652
"Unroll factor forced to be 1.\n");
46604653
return 1;
@@ -4667,15 +4660,20 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
46674660
// We don't attempt to perform interleaving for loops with uncountable early
46684661
// exits because the VPInstruction::AnyOf code cannot currently handle
46694662
// multiple parts.
4670-
if (Legal->hasUncountableEarlyExit())
4663+
if (Plan.hasEarlyExit())
46714664
return 1;
46724665

4673-
const bool HasReductions = !Legal->getReductionVars().empty();
4666+
const bool HasReductions =
4667+
any_of(Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis(),
4668+
IsaPred<VPReductionPHIRecipe>);
46744669

46754670
// If we did not calculate the cost for VF (because the user selected the VF)
46764671
// then we calculate the cost of VF here.
46774672
if (LoopCost == 0) {
4678-
LoopCost = expectedCost(VF);
4673+
if (VF.isScalar())
4674+
LoopCost = CM.expectedCost(VF);
4675+
else
4676+
LoopCost = cost(Plan, VF);
46794677
assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
46804678

46814679
// Loop body is free and there is no need for interleaving.
@@ -4684,7 +4682,7 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
46844682
}
46854683

46864684
VPRegisterUsage R =
4687-
calculateRegisterUsageForPlan(Plan, {VF}, TTI, ValuesToIgnore)[0];
4685+
calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
46884686
// We divide by these constants so assume that we have at least one
46894687
// instruction that uses at least one register.
46904688
for (auto &Pair : R.MaxLocalUsers) {
@@ -4745,21 +4743,21 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
47454743
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
47464744
}
47474745

4748-
unsigned EstimatedVF = getEstimatedRuntimeVF(VF, VScaleForTuning);
4746+
unsigned EstimatedVF = getEstimatedRuntimeVF(VF, CM.getVScaleForTuning());
47494747

47504748
// Try to get the exact trip count, or an estimate based on profiling data or
47514749
// ConstantMax from PSE, failing that.
4752-
if (auto BestKnownTC = getSmallBestKnownTC(PSE, TheLoop)) {
4750+
if (auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop)) {
47534751
// At least one iteration must be scalar when this constraint holds. So the
47544752
// maximum available iterations for interleaving is one less.
4755-
unsigned AvailableTC = requiresScalarEpilogue(VF.isVector())
4753+
unsigned AvailableTC = CM.requiresScalarEpilogue(VF.isVector())
47564754
? BestKnownTC->getFixedValue() - 1
47574755
: BestKnownTC->getFixedValue();
47584756

47594757
unsigned InterleaveCountLB = bit_floor(std::max(
47604758
1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
47614759

4762-
if (getSmallConstantTripCount(PSE.getSE(), TheLoop).isNonZero()) {
4760+
if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
47634761
// If the best known trip count is exact, we select between two
47644762
// prospective ICs, where
47654763
//
@@ -4820,7 +4818,7 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
48204818
// vectorized the loop we will have done the runtime check and so interleaving
48214819
// won't require further checks.
48224820
bool ScalarInterleavingRequiresPredication =
4823-
(VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
4821+
(VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
48244822
return Legal->blockNeedsPredication(BB);
48254823
}));
48264824
bool ScalarInterleavingRequiresRuntimePointerCheck =
@@ -4843,8 +4841,39 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
48434841

48444842
// Interleave until store/load ports (estimated by max interleave count) are
48454843
// saturated.
4846-
unsigned NumStores = Legal->getNumStores();
4847-
unsigned NumLoads = Legal->getNumLoads();
4844+
unsigned NumStores = 0;
4845+
unsigned NumLoads = 0;
4846+
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4847+
vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry()))) {
4848+
for (VPRecipeBase &R : *VPBB) {
4849+
if (isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(&R)) {
4850+
NumLoads++;
4851+
continue;
4852+
}
4853+
if (isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe>(&R)) {
4854+
NumStores++;
4855+
continue;
4856+
}
4857+
4858+
if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4859+
if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4860+
NumStores += StoreOps;
4861+
else
4862+
NumLoads += InterleaveR->getNumDefinedValues();
4863+
continue;
4864+
}
4865+
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4866+
NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4867+
NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4868+
continue;
4869+
}
4870+
if (isa<VPHistogramRecipe>(&R)) {
4871+
NumLoads++;
4872+
NumStores++;
4873+
continue;
4874+
}
4875+
}
4876+
}
48484877
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
48494878
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
48504879

@@ -4854,12 +4883,15 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
48544883
// do the final reduction after the loop.
48554884
bool HasSelectCmpReductions =
48564885
HasReductions &&
4857-
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
4858-
const RecurrenceDescriptor &RdxDesc = Reduction.second;
4859-
RecurKind RK = RdxDesc.getRecurrenceKind();
4860-
return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
4861-
RecurrenceDescriptor::isFindIVRecurrenceKind(RK);
4862-
});
4886+
any_of(Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis(),
4887+
[](VPRecipeBase &R) {
4888+
auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4889+
4890+
return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4891+
RedR->getRecurrenceKind()) ||
4892+
RecurrenceDescriptor::isFindIVRecurrenceKind(
4893+
RedR->getRecurrenceKind()));
4894+
});
48634895
if (HasSelectCmpReductions) {
48644896
LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
48654897
return 1;
@@ -4870,12 +4902,14 @@ LoopVectorizationCostModel::selectInterleaveCount(VPlan &Plan, ElementCount VF,
48704902
// we're interleaving is inside another loop. For tree-wise reductions
48714903
// set the limit to 2, and for ordered reductions it's best to disable
48724904
// interleaving entirely.
4873-
if (HasReductions && TheLoop->getLoopDepth() > 1) {
4905+
if (HasReductions && OrigLoop->getLoopDepth() > 1) {
48744906
bool HasOrderedReductions =
4875-
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
4876-
const RecurrenceDescriptor &RdxDesc = Reduction.second;
4877-
return RdxDesc.isOrdered();
4878-
});
4907+
any_of(Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis(),
4908+
[](VPRecipeBase &R) {
4909+
auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4910+
4911+
return RedR && RedR->isOrdered();
4912+
});
48794913
if (HasOrderedReductions) {
48804914
LLVM_DEBUG(
48814915
dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
@@ -10089,8 +10123,11 @@ bool LoopVectorizePass::processLoop(Loop *L) {
1008910123

1009010124
GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
1009110125
if (LVP.hasPlanWithVF(VF.Width)) {
10126+
VPCostContext CostCtx(CM.TTI, *CM.TLI, CM.Legal->getWidestInductionType(),
10127+
CM, CM.CostKind);
10128+
1009210129
// Select the interleave count.
10093-
IC = CM.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10130+
IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
1009410131

1009510132
unsigned SelectedIC = std::max(IC, UserIC);
1009610133
// Optimistically generate runtime checks if they are needed. Drop them if
@@ -10112,8 +10149,6 @@ bool LoopVectorizePass::processLoop(Loop *L) {
1011210149
// Check if it is profitable to vectorize with runtime checks.
1011310150
bool ForceVectorization =
1011410151
Hints.getForce() == LoopVectorizeHints::FK_Enabled;
10115-
VPCostContext CostCtx(CM.TTI, *CM.TLI, CM.Legal->getWidestInductionType(),
10116-
CM, CM.CostKind);
1011710152
if (!ForceVectorization &&
1011810153
!isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
1011910154
LVP.getPlanFor(VF.Width), SEL,

llvm/lib/Transforms/Vectorize/VPlan.h

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4229,7 +4229,10 @@ class VPlan {
42294229
/// block with multiple predecessors (one for the exit via the latch and one
42304230
/// via the other early exit).
42314231
bool hasEarlyExit() const {
4232-
return ExitBlocks.size() > 1 ||
4232+
return count_if(ExitBlocks,
4233+
[](VPIRBasicBlock *EB) {
4234+
return EB->getNumPredecessors() != 0;
4235+
}) > 1 ||
42334236
(ExitBlocks.size() == 1 && ExitBlocks[0]->getNumPredecessors() > 1);
42344237
}
42354238

llvm/test/Transforms/LoopVectorize/AArch64/predication_costs.ll

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ target triple = "aarch64--linux-gnu"
1919
; (udiv(2) + extractelement(8) + insertelement(4)) / 2 = 7
2020
;
2121
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
22-
; CHECK: Found an estimated cost of 7 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
22+
; CHECK: Cost of 7 for VF 2: profitable to scalarize %tmp4 = udiv i32 %tmp2, %tmp3
2323
;
2424
define i32 @predicated_udiv(ptr %a, ptr %b, i1 %c, i64 %n) {
2525
entry:
@@ -60,7 +60,7 @@ for.end:
6060
; (store(4) + extractelement(4)) / 2 = 4
6161
;
6262
; CHECK: Scalarizing and predicating: store i32 %tmp2, ptr %tmp0, align 4
63-
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: store i32 %tmp2, ptr %tmp0, align 4
63+
; CHECK: Cost of 4 for VF 2: profitable to scalarize store i32 %tmp2, ptr %tmp0, align 4
6464
;
6565
define void @predicated_store(ptr %a, i1 %c, i32 %x, i64 %n) {
6666
entry:
@@ -93,8 +93,8 @@ for.end:
9393
; CHECK: Found scalar instruction: %addr = phi ptr [ %a, %entry ], [ %addr.next, %for.inc ]
9494
; CHECK: Found scalar instruction: %addr.next = getelementptr inbounds i32, ptr %addr, i64 1
9595
; CHECK: Scalarizing and predicating: store i32 %tmp2, ptr %addr, align 4
96-
; CHECK: Found an estimated cost of 0 for VF 2 For instruction: %addr = phi ptr [ %a, %entry ], [ %addr.next, %for.inc ]
97-
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: store i32 %tmp2, ptr %addr, align 4
96+
; CHECK: Cost of 0 for VF 2: induction instruction %addr = phi ptr [ %a, %entry ], [ %addr.next, %for.inc ]
97+
; CHECK: Cost of 4 for VF 2: profitable to scalarize store i32 %tmp2, ptr %addr, align 4
9898
;
9999
define void @predicated_store_phi(ptr %a, i1 %c, i32 %x, i64 %n) {
100100
entry:
@@ -135,9 +135,10 @@ for.end:
135135
;
136136
; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x
137137
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
138-
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x
139-
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
138+
; CHECK: Cost of 3 for VF 2: profitable to scalarize %tmp3 = add nsw i32 %tmp2, %x
139+
; CHECK: Cost of 5 for VF 2: profitable to scalarize %tmp4 = udiv i32 %tmp2, %tmp3
140140
;
141+
141142
define i32 @predicated_udiv_scalarized_operand(ptr %a, i1 %c, i32 %x, i64 %n) {
142143
entry:
143144
br label %for.body
@@ -180,8 +181,8 @@ for.end:
180181
;
181182
; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x
182183
; CHECK: Scalarizing and predicating: store i32 %tmp2, ptr %tmp0, align 4
183-
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x
184-
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, ptr %tmp0, align 4
184+
; CHECK: Cost of 3 for VF 2: profitable to scalarize %tmp2 = add nsw i32 %tmp1, %x
185+
; CHECK: Cost of 2 for VF 2: profitable to scalarize store i32 %tmp2, ptr %tmp0, align 4
185186
;
186187
define void @predicated_store_scalarized_operand(ptr %a, i1 %c, i32 %x, i64 %n) {
187188
entry:
@@ -232,11 +233,11 @@ for.end:
232233
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2
233234
; CHECK: Scalarizing: %tmp5 = sub i32 %tmp4, %x
234235
; CHECK: Scalarizing and predicating: store i32 %tmp5, ptr %tmp0, align 4
235-
; CHECK: Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x
236-
; CHECK: Found an estimated cost of 7 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2
237-
; CHECK: Found an estimated cost of 7 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2
238-
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x
239-
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, ptr %tmp0, align 4
236+
; CHECK: Cost of 7 for VF 2: profitable to scalarize %tmp4 = udiv i32 %tmp3, %tmp2
237+
; CHECK: Cost of 7 for VF 2: profitable to scalarize %tmp3 = sdiv i32 %tmp1, %tmp2
238+
; CHECK: Cost of 2 for VF 2: profitable to scalarize store i32 %tmp5, ptr %tmp0, align 4
239+
; CHECK: Cost of 3 for VF 2: profitable to scalarize %tmp5 = sub i32 %tmp4, %x
240+
; CHECK: Cost of 1 for VF 2: WIDEN ir<%tmp2> = add ir<%tmp1>, ir<%x>
240241
;
241242
define void @predication_multi_context(ptr %a, i1 %c, i32 %x, i64 %n) {
242243
entry:

0 commit comments

Comments
 (0)