|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "b28dd454-0a3a-4e0f-8e74-6c4ad712b783", |
| 7 | + "metadata": { |
| 8 | + "tags": [] |
| 9 | + }, |
| 10 | + "outputs": [], |
| 11 | + "source": [ |
| 12 | + "%load_ext autoreload\n", |
| 13 | + "%autoreload 2" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 2, |
| 19 | + "id": "94e0fa4d-efad-41e1-9314-09a2ef12a438", |
| 20 | + "metadata": { |
| 21 | + "tags": [] |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "import torchxrayvision as xrv\n", |
| 26 | + "import sys\n", |
| 27 | + "import numpy as np\n", |
| 28 | + "import torch\n", |
| 29 | + "import torchvision\n", |
| 30 | + "import matplotlib.pyplot as plt\n", |
| 31 | + "import dataset_utils" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": null, |
| 37 | + "id": "98ed4012-c6bb-4988-802f-0c11f2cd0057", |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 3, |
| 45 | + "id": "794438a4-856b-4eaa-b46e-c1c654a242e1", |
| 46 | + "metadata": { |
| 47 | + "tags": [] |
| 48 | + }, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "model = xrv.baseline_models.xinario.ViewModel()" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "id": "4d608d78-ad75-466f-84f4-f9d5a4237e37", |
| 58 | + "metadata": { |
| 59 | + "tags": [] |
| 60 | + }, |
| 61 | + "outputs": [], |
| 62 | + "source": [] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 4, |
| 67 | + "id": "7abcf913-ee6b-4d6e-b8fd-d4dcd9cd058f", |
| 68 | + "metadata": { |
| 69 | + "tags": [] |
| 70 | + }, |
| 71 | + "outputs": [ |
| 72 | + { |
| 73 | + "name": "stdout", |
| 74 | + "output_type": "stream", |
| 75 | + "text": [ |
| 76 | + "['Granuloma', 'Hemidiaphragm Elevation', 'Pleural_Thickening', 'Nodule', 'Mass', 'Cardiomegaly', 'Consolidation', 'Fibrosis', 'Scoliosis', 'Fracture', 'Atelectasis', 'Emphysema', 'Effusion', 'Air Trapping', 'Aortic Atheromatosis', 'Support Devices', 'Tuberculosis', 'Pneumothorax', 'Costophrenic Angle Blunting', 'Hilar Enlargement', 'Flattened Diaphragm', 'Edema', 'Bronchiectasis', 'Infiltration', 'Tube', 'Aortic Elongation', 'Pneumonia', 'Hernia']\n" |
| 77 | + ] |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "transform = torchvision.transforms.Compose([\n", |
| 82 | + " xrv.datasets.XRayCenterCrop(),\n", |
| 83 | + " xrv.datasets.XRayResizer(224)\n", |
| 84 | + "])\n", |
| 85 | + "d = dataset_utils.get_data('pc', views='*', transform=transform)" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": 5, |
| 91 | + "id": "7164bd40-b0c5-4dd6-b21a-50939ee5236e", |
| 92 | + "metadata": { |
| 93 | + "tags": [] |
| 94 | + }, |
| 95 | + "outputs": [ |
| 96 | + { |
| 97 | + "data": { |
| 98 | + "text/plain": [ |
| 99 | + "array(['PA', 'L', 'AP', 'AP Supine', 'COSTAL', 'UNK', 'EXCLUDE'],\n", |
| 100 | + " dtype=object)" |
| 101 | + ] |
| 102 | + }, |
| 103 | + "execution_count": 5, |
| 104 | + "metadata": {}, |
| 105 | + "output_type": "execute_result" |
| 106 | + } |
| 107 | + ], |
| 108 | + "source": [ |
| 109 | + "d.csv.view.unique()" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": 6, |
| 115 | + "id": "2984fdc2-3ab8-4edf-9cb2-7aca381ffe2f", |
| 116 | + "metadata": { |
| 117 | + "tags": [] |
| 118 | + }, |
| 119 | + "outputs": [], |
| 120 | + "source": [ |
| 121 | + "frontal = np.where(d.csv.view == 'PA')[0]" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": 7, |
| 127 | + "id": "47717a84-2120-459e-ad08-df074bdadce3", |
| 128 | + "metadata": { |
| 129 | + "tags": [] |
| 130 | + }, |
| 131 | + "outputs": [], |
| 132 | + "source": [ |
| 133 | + "lateral = np.where(d.csv.view == 'L')[0]" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 8, |
| 139 | + "id": "342ba82d-5504-4e65-80cd-40e467bcf3a6", |
| 140 | + "metadata": { |
| 141 | + "tags": [] |
| 142 | + }, |
| 143 | + "outputs": [ |
| 144 | + { |
| 145 | + "name": "stdout", |
| 146 | + "output_type": "stream", |
| 147 | + "text": [ |
| 148 | + "tensor([[23.1546, 16.9751]]) Frontal\n", |
| 149 | + "tensor([[23.6190, 15.1804]]) Frontal\n", |
| 150 | + "tensor([[23.9368, 15.9114]]) Frontal\n", |
| 151 | + "tensor([[20.4266, 14.5170]]) Frontal\n", |
| 152 | + "tensor([[25.9273, 14.4245]]) Frontal\n", |
| 153 | + "tensor([[24.4080, 13.7654]]) Frontal\n", |
| 154 | + "tensor([[25.0222, 15.7349]]) Frontal\n", |
| 155 | + "tensor([[23.8637, 16.7607]]) Frontal\n", |
| 156 | + "tensor([[22.3303, 13.5714]]) Frontal\n", |
| 157 | + "tensor([[21.2553, 14.0465]]) Frontal\n" |
| 158 | + ] |
| 159 | + } |
| 160 | + ], |
| 161 | + "source": [ |
| 162 | + "for i in frontal[:10]:\n", |
| 163 | + " img = d[i]['img']\n", |
| 164 | + " with torch.no_grad():\n", |
| 165 | + " output = model(torch.from_numpy(img))\n", |
| 166 | + " print(output, model.targets[output.argmax()])" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 9, |
| 172 | + "id": "f9161e17-f505-4cf1-87ad-40a73e79ae21", |
| 173 | + "metadata": { |
| 174 | + "tags": [] |
| 175 | + }, |
| 176 | + "outputs": [ |
| 177 | + { |
| 178 | + "name": "stdout", |
| 179 | + "output_type": "stream", |
| 180 | + "text": [ |
| 181 | + "tensor([[17.3186, 26.7156]]) Lateral\n", |
| 182 | + "tensor([[15.9319, 24.5127]]) Lateral\n", |
| 183 | + "tensor([[20.1788, 34.1056]]) Lateral\n", |
| 184 | + "tensor([[20.5084, 35.7469]]) Lateral\n", |
| 185 | + "tensor([[20.0122, 36.1225]]) Lateral\n", |
| 186 | + "tensor([[20.1512, 29.6003]]) Lateral\n", |
| 187 | + "tensor([[21.8098, 32.7101]]) Lateral\n", |
| 188 | + "tensor([[18.7384, 35.3062]]) Lateral\n", |
| 189 | + "tensor([[19.8528, 28.8093]]) Lateral\n", |
| 190 | + "tensor([[20.8488, 33.3455]]) Lateral\n" |
| 191 | + ] |
| 192 | + } |
| 193 | + ], |
| 194 | + "source": [ |
| 195 | + "for i in lateral[:10]:\n", |
| 196 | + " img = d[i]['img']\n", |
| 197 | + " with torch.no_grad():\n", |
| 198 | + " output = model(torch.from_numpy(img))\n", |
| 199 | + " print(output, model.targets[output.argmax()])" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": null, |
| 205 | + "id": "69b9abb6-bf8c-451b-8eea-237da57dc6dc", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [], |
| 208 | + "source": [] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": null, |
| 213 | + "id": "fdfb6d6b-3093-468e-b32a-cc3bb857994f", |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [], |
| 216 | + "source": [] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "id": "b35d5965-10d4-4d1e-bfca-4df7afbd5f7d", |
| 222 | + "metadata": { |
| 223 | + "tags": [] |
| 224 | + }, |
| 225 | + "outputs": [], |
| 226 | + "source": [] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": null, |
| 231 | + "id": "5b25a4c6-e41f-4f0b-8103-672902ab2d28", |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [] |
| 235 | + } |
| 236 | + ], |
| 237 | + "metadata": { |
| 238 | + "kernelspec": { |
| 239 | + "display_name": "Python 3 (ipykernel)", |
| 240 | + "language": "python", |
| 241 | + "name": "python3" |
| 242 | + }, |
| 243 | + "language_info": { |
| 244 | + "codemirror_mode": { |
| 245 | + "name": "ipython", |
| 246 | + "version": 3 |
| 247 | + }, |
| 248 | + "file_extension": ".py", |
| 249 | + "mimetype": "text/x-python", |
| 250 | + "name": "python", |
| 251 | + "nbconvert_exporter": "python", |
| 252 | + "pygments_lexer": "ipython3", |
| 253 | + "version": "3.9.0" |
| 254 | + } |
| 255 | + }, |
| 256 | + "nbformat": 4, |
| 257 | + "nbformat_minor": 5 |
| 258 | +} |
0 commit comments