Skip to content

Commit 356b1eb

Browse files
committed
minor
1 parent f067f45 commit 356b1eb

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

pages/documentation_matlab/SO3Kernels.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
bandwidth: 3
2323
halfwidth: 40°
2424
{% endhighlight %}
25-
<p>We plot this function by evaluation of its Chebychev series in \(\cos(\frac{\omega}{2})\) for \(\omega\in[-pi,\pi].\)</p>
25+
<p>We plot this function by evaluation of its Chebychev series in \(\cos(\frac{\omega}{2})\) for \(\omega \in [-\pi,\pi]\).</p>
2626
{% highlight matlab %}
2727
plot(psi)
2828
{% endhighlight %}
@@ -49,7 +49,7 @@
4949

5050
Bunge Euler angles in degree
5151
phi1 Phi phi2 weight
52-
345.959 150.052 302.531 1
52+
42.7367 170.109 84.2033 1
5353
{% endhighlight %}
5454
<center>
5555
{% include inline_image.html file="SO3Kernels_02.png" %}
@@ -326,7 +326,7 @@
326326
{% endhighlight %}
327327
<center>
328328
{% include inline_image.html file="SO3Kernels_19.png" %}
329-
</center><h2 id="24">The Bump kernel</h2><p>The <a href="SO3Kernels.SO3BumpKernel.html">bump kernel</a> \(\tilde\psi_r\in L^2(\mathcal{SO}(3))\) is a radial symmetric kernel function depending on a parameter \(r\in (0,pi)\). The function value is 0, if the angle is greater then the halfwidth \(r\). Otherwise it is has a contstant value, such that the mean of \(\psi_r\) on \(\mathcal{SO}(3)\) is 1. Hence we use the open set</p><p>\[U_r = \{ \bf{R} \in \mathcal{SO}(3) \,\vert ~ \lvert \omega( \bf{R})\rvert &lt;r \}\]</p><p>and define the bump kernel by</p><p>\[ \tilde\psi_r( \bf{R}) = \frac1{\lvert U_r \rvert } \mathbf{1}_{ \{ \bf{R} \in U_r \} } \]</p><p>where \(\mathbf{1}\) is the indicator function.</p><p>The main problem of the bump kernel is that we need a lot of chebychev coefficients to describe it. That possibly can result in high runtimes.</p>
329+
</center><h2 id="24">The Bump kernel</h2><p>The <a href="SO3Kernels.SO3BumpKernel.html">bump kernel</a> \(\tilde\psi_r\in L^2(\mathcal{SO}(3))\) is a radial symmetric kernel function depending on a parameter \(r\in (0,\pi)\). The function value is 0, if the angle is greater then the halfwidth \(r\). Otherwise it is has a contstant value, such that the mean of \(\psi_r\) on \(\mathcal{SO}(3)\) is 1. Hence we use the open set</p><p>\[U_r = \{ \bf{R} \in \mathcal{SO}(3) \,\vert ~ \lvert \omega( \bf{R})\rvert &lt;r \}\]</p><p>and define the bump kernel by</p><p>\[ \tilde\psi_r( \bf{R}) = \frac1{\lvert U_r \rvert } \mathbf{1}_{ \{ \bf{R} \in U_r \} } \]</p><p>where \(\mathbf{1}\) is the indicator function.</p><p>The main problem of the bump kernel is that we need a lot of chebychev coefficients to describe it. That possibly can result in high runtimes.</p>
330330
{% highlight matlab %}
331331
psi1 = SO3BumpKernel(30*degree)
332332
psi2 = SO3BumpKernel(40*degree)

0 commit comments

Comments
 (0)