You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Updated DCASE2025 Task2
* Update README.md
Fixed some typos
* Previous DCASE scripts have been unified into legacy
* Added support for Additional training dataset
* Fixed the function to download datasets
* Supported Evaluation dataset for DCASE2025T2
* Added Ground truth
---------
Co-authored-by: Noboru Harada <64912994+noboru2000@users.noreply.github.com>
- data\_download\_2025eval.sh **Updated on (2025/06/01)**
27
27
- "Additional test dataset for Evaluation"
28
28
- This script downloads evaluation data files and puts them into `data/dcase2025t2/eval\_data/raw/test`.
29
29
@@ -38,7 +38,7 @@ This system consists of three main scripts (01_train.sh, 02a_test.sh, and 02b_te
38
38
- This script makes a CSV file for each section, including the anomaly scores for each WAV file in the directories `data/dcase2025t2/dev_data/raw/<machine_type>/test/`.
39
39
- The CSV files will be stored in the directory `results/`.
40
40
- It also makes a csv file including AUC, pAUC, precision, recall, and F1-score for each section.
- This script makes a CSV file for each section, including the anomaly scores for each wav file in the directories `data/dcase2025t2/eval_data/raw/<machine_type>/test/`. (These directories will be made available with the "evaluation dataset".)
43
43
- The CSV files are stored in the directory `results/`.
44
44
@@ -47,7 +47,7 @@ This system consists of three main scripts (01_train.sh, 02a_test.sh, and 02b_te
47
47
- This script makes a CSV file for each section, including the anomaly scores for each wav file in the directories `data/dcase2025t2/dev_data/raw/<machine_type>/test/`.
48
48
- The CSV files will be stored in the directory `results/`.
49
49
- It also makes a csv file including AUC, pAUC, precision, recall, and F1-score for each section.
- This script makes a CSV file for each section, including the anomaly scores for each wav file in the directories `data/dcase2025t2/eval_data/raw/<machine_type>/test/`. (These directories will be made available with the "evaluation dataset".)
52
52
- The CSV files are stored in the directory `results/`.
53
53
@@ -68,11 +68,11 @@ Clone this repository from GitHub.
68
68
We will launch the datasets in three stages. Therefore, please download the datasets in each stage:
69
69
70
70
+ DCASE 2025 Challenge Task 2
71
-
+ "Development Dataset" **New! (2025/04/01)**
71
+
+ "Development Dataset" **Updated on (2025/04/01)**
72
72
+ Download "dev\_data_<machine_type>.zip" from [https://zenodo.org/records/15097779](https://zenodo.org/records/15097779).
73
-
+ "Additional Training Dataset", i.e., the evaluation dataset for training **New! (2025/05/15)**
73
+
+ "Additional Training Dataset", i.e., the evaluation dataset for training **Updated on (2025/05/15)**
74
74
+ Download "eval\_data_<machine_type>_train.zip" from [https://zenodo.org/records/15392814](https://zenodo.org/records/15392814).
75
-
+ "Evaluation Dataset", i.e., the evaluation dataset for test **New! (2025/06/01)**
75
+
+ "Evaluation Dataset", i.e., the evaluation dataset for test **Updated on (2025/06/01)**
76
76
+ Download "eval\_data_<machine_type>_test.zip" from [https://zenodo.org/records/15519362](https://zenodo.org/records/15519362).
77
77
78
78
+ DCASE 2024 Challenge Task 2 (C.f., for DCASE2024T2, see [README_legacy](README_legacy.md))
@@ -139,15 +139,15 @@ We will launch the datasets in three stages. Therefore, please download the data
139
139
+ section\_00\_test\_0000.wav
140
140
+ ...
141
141
+ section\_00\_test\_0199.wav
142
-
<!--+ test_rename/ (convert from test directory using `tools/rename.py`)
142
+
+ test_rename/ (convert from test directory using `tools/rename.py`)
+ attributes\_00.csv (attributes CSV for section 00)
152
152
+\<machine\_type1\_of\_additional\_dataset\> (The other machine types have the same directory structure as \<machine\_type0\_of\_additional\_dataset\>/.)
153
153
@@ -246,7 +246,7 @@ $ 01_train_2025t2.sh -e
246
246
247
247
Models are trained by using the additional training dataset `data/dcase2025t2/raw/eval_data/<machine_type>/train/`.
248
248
249
-
### 9. Run the test script for the evaluation dataset **Newly added!! (2025/06/01)**
249
+
### 9. Run the test script for the evaluation dataset **Updated on (2025/06/01)**
250
250
251
251
### 9.1. Testing with the Simple Autoencoder mode
252
252
@@ -258,7 +258,7 @@ $ 02a_test_2025t2.sh -e
258
258
259
259
Anomaly scores are calculated using the evaluation dataset, i.e., `data/dcase2025t2/eval_data/raw/<machine_type>/test/`. The anomaly scores are stored as CSV files in the directory `results/`. You can submit the CSV files for the challenge. From the submitted CSV files, we will calculate AUC, pAUC, and your ranking.
260
260
261
-
<!--If you use [rename script](./tools/rename_eval_wav.py) to generate `test_rename` directory, AUC and pAUC are also calculated.-->
261
+
If you use [rename script](./tools/rename_eval_wav.py) to generate `test_rename` directory, AUC and pAUC are also calculated.
262
262
263
263
### 9.2. Testing with the Selective Mahalanobis mode
264
264
@@ -270,7 +270,7 @@ $ 02b_test_2025t2.sh -e
270
270
271
271
Anomaly scores are calculated using the evaluation dataset, i.e., `data/dcase2025t2/eval_data/raw/<machine_type>/test/`. The anomaly scores are stored as CSV files in the directory `results/`. You can submit the CSV files for the challenge. From the submitted CSV files, we will calculate AUC, pAUC, and your ranking.
272
272
273
-
<!--If you use [rename script](./tools/rename_eval_wav.py) to generate `test_rename` directory, AUC and pAUC are also calculated.-->
273
+
If you use [rename script](./tools/rename_eval_wav.py) to generate `test_rename` directory, AUC and pAUC are also calculated.
274
274
275
275
### 10. Summarize results
276
276
@@ -285,7 +285,7 @@ After the summary, the results are exported in CSV format to `results/dev_data/b
285
285
286
286
If you want to change, summarize results directory or export directory, edit `03_summarize_results.sh`.
287
287
288
-
<!--After the executed `02a_test_2025t2.sh`, `02b_test_2025t2.sh`, or both. Run the summarize script `03_summarize_results.sh` with the option `DCASE2025T2 -d` or `DCASE2025T2 -e`.
288
+
After the executed `02a_test_2025t2.sh`, `02b_test_2025t2.sh`, or both. Run the summarize script `03_summarize_results.sh` with the option `DCASE2025T2 -d` or `DCASE2025T2 -e`.
After the summary, the results are exported in CSV format to `results/dev_data/baseline/summarize/DCASE2025T2` or `results/eval_data/baseline/summarize/DCASE2025T2`.
296
296
297
-
If you want to change, summarize results directory or export directory, edit `03_summarize_results.sh`.-->
297
+
If you want to change, summarize results directory or export directory, edit `03_summarize_results.sh`.
298
298
299
299
## Legacy support
300
300
@@ -328,6 +328,18 @@ We developed and tested the source code on Ubuntu 22.04.5 LTS.
### Ground truth for evaluation datasets in this repository
460
472
461
473
This repository have evaluation data's ground truth csv. this csv is using to rename evaluation datasets.
462
474
You can calculate AUC and other score if add ground truth to evaluation datasets file name. *Usually, rename function is executed along with [download script](#description) and [auto download function](#41-enable-auto-download-dataset).
<!--Attribute information is hidden by default for the following machine types:
480
+
Attribute information is hidden by default for the following machine types:
469
481
470
482
- dev data
471
-
- gearbox
483
+
-bearing
472
484
- slider
485
+
- ToyTrain
486
+
- eval_data
487
+
- AutoTrash
488
+
- Polisher
489
+
- ScrewFeeder
490
+
- ToyPet
473
491
474
492
You can view the hidden attributes in the following directory:
475
493
476
-
- [DCASE2025 task2 Ground truth Attributes](datasets/ground_truth_attributes)-->
494
+
-[DCASE2025 task2 Ground truth Attributes](datasets/ground_truth_attributes)
477
495
478
496
## Citation
479
497
480
498
If you use this system, please cite all the following four papers:
481
499
482
-
+ Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, and Yohei Kawaguchi. Description and discussion on DCASE 2024 challenge task 2: first-shot unsupervised anomalous sound detection for machine condition monitoring. In arXiv e-prints: 2406.07250, 2024. [URL](https://arxiv.org/pdf/2406.07250.pdf)
500
+
+ Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, and Yohei Kawaguchi. Description and discussion on DCASE 2025 challenge task 2: first-shot unsupervised anomalous sound detection for machine condition monitoring. In arXiv e-prints: 2506.10097, 2025. [URL](https://arxiv.org/pdf/2506.10097.pdf)
483
501
+ Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and Shoichiro Saito. ToyADMOS2: another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions. In Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop (DCASE), 1–5. Barcelona, Spain, November 2021. [URL](https://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Harada_6.pdf)
484
502
+ Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi. MIMII DG: sound dataset for malfunctioning industrial machine investigation and inspection for domain generalization task. In Proceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022 Workshop (DCASE2022). Nancy, France, November 2022. [URL](https://dcase.community/documents/workshop2022/proceedings/DCASE2022Workshop_Dohi_62.pdf)
485
503
+ Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and Masahiro Yasuda. First-shot anomaly detection for machine condition monitoring: a domain generalization baseline. Proceedings of 31st European Signal Processing Conference (EUSIPCO), pages 191–195, 2023. [URL](https://eurasip.org/Proceedings/Eusipco/Eusipco2023/pdfs/0000191.pdf)
0 commit comments