|
6 | 6 | import torch
|
7 | 7 | import torchrl
|
8 | 8 | from tensordict import TensorDict, TensorDictBase
|
| 9 | +from tensordict.nn import TensorDictModuleBase |
9 | 10 |
|
10 | 11 | from torchrl.data.map import MCTSForest, Tree
|
11 | 12 | from torchrl.envs import EnvBase
|
12 | 13 |
|
13 | 14 | C = 2.0**0.5
|
14 | 15 |
|
15 | 16 |
|
16 |
| -# TODO: Allow user to specify different priority functions with PR #2358 |
17 |
| -def _traversal_priority_UCB1(tree): |
18 |
| - subtree = tree.subtree |
19 |
| - visits = subtree.visits |
20 |
| - reward_sum = subtree.wins |
21 |
| - |
22 |
| - # If it's black's turn, flip the reward, since black wants to optimize for |
23 |
| - # the lowest reward, not highest. |
24 |
| - # TODO: Need a more generic way to do this, since not all use cases of MCTS |
25 |
| - # will be two player turn based games. |
26 |
| - if not subtree.rollout[0, 0]["turn"]: |
27 |
| - reward_sum = -reward_sum |
28 |
| - |
29 |
| - parent_visits = tree.visits |
30 |
| - reward_sum = reward_sum.squeeze(-1) |
31 |
| - priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits |
32 |
| - priority[visits == 0] = float("inf") |
33 |
| - return priority |
34 |
| - |
35 |
| - |
36 |
| -def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps): |
37 |
| - done = False |
38 |
| - trees_visited = [tree] |
39 |
| - |
40 |
| - while not done: |
41 |
| - if tree.subtree is None: |
42 |
| - td_tree = tree.rollout[-1]["next"].clone() |
43 |
| - |
44 |
| - if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]: |
45 |
| - actions = env.all_actions(td_tree) |
46 |
| - subtrees = [] |
47 |
| - |
48 |
| - for action in actions: |
49 |
| - td = env.step(env.reset(td_tree).update(action)) |
50 |
| - new_node = torchrl.data.Tree( |
51 |
| - rollout=td.unsqueeze(0), |
52 |
| - node_data=td["next"].select(*forest.node_map.in_keys), |
53 |
| - count=torch.tensor(0), |
54 |
| - wins=torch.zeros_like(td["next", env.reward_key]), |
55 |
| - ) |
56 |
| - subtrees.append(new_node) |
57 |
| - |
58 |
| - # NOTE: This whole script runs about 2x faster with lazy stack |
59 |
| - # versus eager stack. |
60 |
| - tree.subtree = TensorDict.lazy_stack(subtrees) |
61 |
| - chosen_idx = torch.randint(0, len(subtrees), ()).item() |
62 |
| - rollout_state = subtrees[chosen_idx].rollout[-1]["next"] |
| 17 | +class MCTS(TensorDictModuleBase): |
| 18 | + """Monte-Carlo tree search. |
63 | 19 |
|
64 |
| - else: |
65 |
| - rollout_state = td_tree |
| 20 | + Attributes: |
| 21 | + num_traversals (int): Number of times to traverse the tree. |
| 22 | + rollout_max_steps (int): Maximum number of steps for each rollout. |
66 | 23 |
|
67 |
| - if rollout_state["done"]: |
68 |
| - rollout_reward = rollout_state[env.reward_key] |
69 |
| - else: |
70 |
| - rollout = env.rollout( |
71 |
| - max_steps=max_rollout_steps, |
72 |
| - tensordict=rollout_state, |
73 |
| - ) |
74 |
| - rollout_reward = rollout[-1]["next", env.reward_key] |
75 |
| - done = True |
76 |
| - |
77 |
| - else: |
78 |
| - priorities = _traversal_priority_UCB1(tree) |
79 |
| - chosen_idx = torch.argmax(priorities).item() |
80 |
| - tree = tree.subtree[chosen_idx] |
81 |
| - trees_visited.append(tree) |
82 |
| - |
83 |
| - for tree in trees_visited: |
84 |
| - tree.visits += 1 |
85 |
| - tree.wins += rollout_reward |
86 |
| - |
87 |
| - |
88 |
| -def MCTS( |
89 |
| - forest: MCTSForest, |
90 |
| - root: TensorDictBase, |
91 |
| - env: EnvBase, |
92 |
| - num_steps: int, |
93 |
| - max_rollout_steps: int | None = None, |
94 |
| -) -> Tree: |
95 |
| - """Performs Monte-Carlo tree search in an environment. |
96 |
| -
|
97 |
| - Args: |
98 |
| - forest (MCTSForest): Forest of the tree to update. If the tree does not |
99 |
| - exist yet, it is added. |
100 |
| - root (TensorDict): The root step of the tree to update. |
101 |
| - env (EnvBase): Environment to performs actions in. |
102 |
| - num_steps (int): Number of iterations to traverse. |
103 |
| - max_rollout_steps (int): Maximum number of steps for each rollout. |
| 24 | + Methods: |
| 25 | + forward: Runs the tree search. |
104 | 26 | """
|
105 |
| - for action in env.all_actions(root): |
106 |
| - td = env.step(env.reset(root.clone()).update(action)) |
107 |
| - forest.extend(td.unsqueeze(0)) |
108 | 27 |
|
109 |
| - tree = forest.get_tree(root) |
110 |
| - |
111 |
| - tree.wins = torch.zeros_like(td["next", env.reward_key]) |
112 |
| - for subtree in tree.subtree: |
113 |
| - subtree.wins = torch.zeros_like(td["next", env.reward_key]) |
114 |
| - |
115 |
| - for _ in range(num_steps): |
116 |
| - _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps) |
| 28 | + def __init__( |
| 29 | + self, |
| 30 | + num_traversals: int, |
| 31 | + rollout_max_steps: int | None = None, |
| 32 | + ): |
| 33 | + super().__init__() |
| 34 | + self.num_traversals = num_traversals |
| 35 | + self.rollout_max_steps = rollout_max_steps |
| 36 | + |
| 37 | + def forward( |
| 38 | + self, |
| 39 | + forest: MCTSForest, |
| 40 | + root: TensorDictBase, |
| 41 | + env: EnvBase, |
| 42 | + ) -> Tree: |
| 43 | + """Performs Monte-Carlo tree search in an environment. |
| 44 | +
|
| 45 | + Args: |
| 46 | + forest (MCTSForest): Forest of the tree to update. If the tree does not |
| 47 | + exist yet, it is added. |
| 48 | + root (TensorDict): The root step of the tree to update. |
| 49 | + env (EnvBase): Environment to performs actions in. |
| 50 | + """ |
| 51 | + for action in env.all_actions(root): |
| 52 | + td = env.step(env.reset(root.clone()).update(action)) |
| 53 | + forest.extend(td.unsqueeze(0)) |
| 54 | + |
| 55 | + tree = forest.get_tree(root) |
| 56 | + |
| 57 | + tree.wins = torch.zeros_like(td["next", env.reward_key]) |
| 58 | + for subtree in tree.subtree: |
| 59 | + subtree.wins = torch.zeros_like(td["next", env.reward_key]) |
| 60 | + |
| 61 | + for _ in range(self.num_traversals): |
| 62 | + self._traverse_MCTS_one_step(forest, tree, env, self.rollout_max_steps) |
| 63 | + |
| 64 | + return tree |
| 65 | + |
| 66 | + def _traverse_MCTS_one_step(self, forest, tree, env, rollout_max_steps): |
| 67 | + done = False |
| 68 | + trees_visited = [tree] |
| 69 | + |
| 70 | + while not done: |
| 71 | + if tree.subtree is None: |
| 72 | + td_tree = tree.rollout[-1]["next"].clone() |
| 73 | + |
| 74 | + if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]: |
| 75 | + actions = env.all_actions(td_tree) |
| 76 | + subtrees = [] |
| 77 | + |
| 78 | + for action in actions: |
| 79 | + td = env.step(env.reset(td_tree).update(action)) |
| 80 | + new_node = torchrl.data.Tree( |
| 81 | + rollout=td.unsqueeze(0), |
| 82 | + node_data=td["next"].select(*forest.node_map.in_keys), |
| 83 | + count=torch.tensor(0), |
| 84 | + wins=torch.zeros_like(td["next", env.reward_key]), |
| 85 | + ) |
| 86 | + subtrees.append(new_node) |
| 87 | + |
| 88 | + # NOTE: This whole script runs about 2x faster with lazy stack |
| 89 | + # versus eager stack. |
| 90 | + tree.subtree = TensorDict.lazy_stack(subtrees) |
| 91 | + chosen_idx = torch.randint(0, len(subtrees), ()).item() |
| 92 | + rollout_state = subtrees[chosen_idx].rollout[-1]["next"] |
| 93 | + |
| 94 | + else: |
| 95 | + rollout_state = td_tree |
| 96 | + |
| 97 | + if rollout_state["done"]: |
| 98 | + rollout_reward = rollout_state[env.reward_key] |
| 99 | + else: |
| 100 | + rollout = env.rollout( |
| 101 | + max_steps=rollout_max_steps, |
| 102 | + tensordict=rollout_state, |
| 103 | + ) |
| 104 | + rollout_reward = rollout[-1]["next", env.reward_key] |
| 105 | + done = True |
117 | 106 |
|
118 |
| - return tree |
| 107 | + else: |
| 108 | + priorities = self._traversal_priority_UCB1(tree) |
| 109 | + chosen_idx = torch.argmax(priorities).item() |
| 110 | + tree = tree.subtree[chosen_idx] |
| 111 | + trees_visited.append(tree) |
| 112 | + |
| 113 | + for tree in trees_visited: |
| 114 | + tree.visits += 1 |
| 115 | + tree.wins += rollout_reward |
| 116 | + |
| 117 | + # TODO: Allow user to specify different priority functions with PR #2358 |
| 118 | + def _traversal_priority_UCB1(self, tree): |
| 119 | + subtree = tree.subtree |
| 120 | + visits = subtree.visits |
| 121 | + reward_sum = subtree.wins |
| 122 | + |
| 123 | + # If it's black's turn, flip the reward, since black wants to optimize for |
| 124 | + # the lowest reward, not highest. |
| 125 | + # TODO: Need a more generic way to do this, since not all use cases of MCTS |
| 126 | + # will be two player turn based games. |
| 127 | + if not subtree.rollout[0, 0]["turn"]: |
| 128 | + reward_sum = -reward_sum |
| 129 | + |
| 130 | + parent_visits = tree.visits |
| 131 | + reward_sum = reward_sum.squeeze(-1) |
| 132 | + priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits |
| 133 | + priority[visits == 0] = float("inf") |
| 134 | + return priority |
0 commit comments