Skip to content

Commit 07ef549

Browse files
jeffkbkimfacebook-github-bot
authored andcommitted
Implement tensor padding for local shards wrapper (#3382)
Summary: X-link: pytorch/pytorch#163183 This diff implements the constant padding functionality (aten.constant_pad_nd.default) for `LocalShardsWrapper`. The method applies constant padding to the local shards based on the provided padding specification. Depending on the sharding type (RW, CW), the padding on [left, right, top, bottom] directions will be either applied to the first/last shard, or all local shards. New unit tests cover: - 1D (RW) top/bottom paddings - 2D (CW) left, right, top, bottom paddings - empty shards, number of dimensions > 2 Differential Revision: D82663766
1 parent ced0adf commit 07ef549

File tree

2 files changed

+487
-1
lines changed

2 files changed

+487
-1
lines changed

torchrec/distributed/shards_wrapper.py

Lines changed: 183 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ def __new__(
7373
cat_tensor_shape[1] += shard.size()[1]
7474

7575
# in cases of sharding optimizer rowwise, we calculate total tensor size by "concat" on first tensor dimension
76-
if len(local_shards) > 1 and local_shards[0].ndim == 1: # column-wise sharding
76+
if len(local_shards) > 1 and local_shards[0].ndim == 1: # row-wise sharding
7777
for shard in local_shards[1:]:
7878
cat_tensor_shape[0] += shard.size()[0]
7979

@@ -119,6 +119,7 @@ def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
119119
aten.copy_.default: cls.handle_copy_,
120120
aten.zeros_like.default: cls.handle_zeros_like,
121121
aten.empty_like.default: cls.handle_empty_like,
122+
aten.constant_pad_nd.default: cls.handle_constant_pad_nd,
122123
}
123124

124125
if func in dispatcher:
@@ -279,6 +280,187 @@ def handle_new_empty(args, kwargs):
279280
self_ls.local_offsets(),
280281
)
281282

283+
@staticmethod
284+
# pyre-fixme[3]: Return type must be annotated.
285+
# pyre-fixme[2]: Parameter must be annotated.
286+
def handle_constant_pad_nd(args, kwargs):
287+
"""
288+
Apply constant padding to LocalShardsWrapper.
289+
290+
The padding is based off of the following ideas:
291+
- The resulting wrapper represents the padded version of the logical tensor.
292+
- Each shard is padded based on the sharding type + dimension that is padded.
293+
- For instance, CW shards padded on the left most col will have only padding on the first CW shard.
294+
- Padding the top row will apply to all CW shards.
295+
"""
296+
self_lsw = args[0]
297+
pad_spec = args[1]
298+
pad_value = args[2] if len(args) > 2 else 0.0
299+
300+
if len(self_lsw.local_shards()) == 0:
301+
raise NotImplementedError("Padding empty LocalShardsWrapper is not supported.")
302+
303+
local_shards = self_lsw.local_shards()
304+
305+
if len(local_shards) == 1:
306+
padded_shard = torch.nn.functional.pad(
307+
local_shards[0], pad_spec, mode="constant", value=pad_value
308+
)
309+
return LocalShardsWrapper([padded_shard], self_lsw.local_offsets())
310+
311+
padded_shards = list(local_shards)
312+
313+
if local_shards[0].ndim == 2:
314+
# 2D Column-wise sharding: [pad_left, pad_right, pad_top, pad_bottom]
315+
pad_left, pad_right, pad_top, pad_bottom = pad_spec[0], pad_spec[1], pad_spec[2], pad_spec[3]
316+
317+
if pad_top > 0:
318+
padded_shards = [
319+
torch.nn.functional.pad(
320+
shard, [0, 0, pad_top, 0], mode="constant", value=pad_value
321+
)
322+
for shard in padded_shards
323+
]
324+
if pad_bottom > 0:
325+
padded_shards = [
326+
torch.nn.functional.pad(
327+
shard, [0, 0, 0, pad_bottom], mode="constant", value=pad_value
328+
)
329+
for shard in padded_shards
330+
]
331+
if pad_left > 0:
332+
padded_shards[0] = torch.nn.functional.pad(
333+
padded_shards[0],
334+
[pad_left, 0, 0, 0],
335+
mode="constant",
336+
value=pad_value
337+
)
338+
if pad_right > 0:
339+
padded_shards[-1] = torch.nn.functional.pad(
340+
padded_shards[-1],
341+
[0, pad_right, 0, 0],
342+
mode="constant",
343+
value=pad_value
344+
)
345+
elif local_shards[0].ndim == 1:
346+
# 1D Row-wise sharding: [pad_top, pad_bottom]
347+
pad_top, pad_bottom = pad_spec[0], pad_spec[1]
348+
349+
if pad_top > 0:
350+
padded_shards[0] = torch.nn.functional.pad(
351+
padded_shards[0], [pad_top, 0], mode="constant", value=pad_value
352+
)
353+
if pad_bottom > 0:
354+
padded_shards[-1] = torch.nn.functional.pad(
355+
padded_shards[-1], [0, pad_bottom], mode="constant", value=pad_value
356+
)
357+
else:
358+
raise NotImplementedError(
359+
f"Padding for {local_shards[0].ndim}D tensors is not supported. "
360+
f"Only 1D and 2D tensors are currently supported."
361+
)
362+
363+
# Update offsets and storage metadata
364+
original_storage = self_lsw.storage_metadata()
365+
updated_offsets, updated_storage = LocalShardsWrapper._compute_updated_metadata(
366+
original_storage,
367+
self_lsw.local_offsets(),
368+
pad_spec, local_shards[0].ndim,
369+
padded_shards
370+
)
371+
372+
result = LocalShardsWrapper(padded_shards, updated_offsets)
373+
result._storage_meta = updated_storage
374+
return result
375+
376+
@staticmethod
377+
def _compute_updated_metadata(
378+
original_storage: TensorStorageMetadata,
379+
original_offsets: list[torch.Size],
380+
pad_spec: list[int],
381+
ndim: int,
382+
padded_shards: list[torch.Tensor],
383+
) -> tuple[list[torch.Size], TensorStorageMetadata]:
384+
"""
385+
Compute updated offsets and storage metadata after padding is applied.
386+
387+
Args:
388+
original_storage: Original storage metadata
389+
original_offsets: Original shard offsets
390+
pad_spec: Padding specification
391+
ndim: Number of dimensions (1=RW or 2=CW)
392+
padded_shards: Padded shard tensors
393+
394+
Returns:
395+
Tuple of (updated_offsets, updated_storage_metadata)
396+
"""
397+
if ndim == 1: # 1D RW
398+
pad_top, pad_bottom = pad_spec[0], pad_spec[1]
399+
400+
updated_offsets = []
401+
for i, offset in enumerate(original_offsets):
402+
if i == 0:
403+
# First shard: offset stays the same (absorbs top padding)
404+
updated_offsets.append(offset)
405+
else:
406+
# Subsequent shards: shift by top padding amount
407+
new_offset = (offset[0] + pad_top,)
408+
updated_offsets.append(torch.Size(new_offset))
409+
410+
new_global_size = torch.Size(
411+
[original_storage.size[0] + pad_top + pad_bottom]
412+
)
413+
414+
elif ndim == 2: # 2D CW
415+
pad_left, pad_right, pad_top, pad_bottom = (
416+
pad_spec[0],
417+
pad_spec[1],
418+
pad_spec[2],
419+
pad_spec[3]
420+
)
421+
422+
updated_offsets = []
423+
for i, offset in enumerate(original_offsets):
424+
row_offset = offset[0]
425+
col_offset = offset[1]
426+
427+
# Top/bottom padding doesn't affect offsets
428+
# Left padding affects column offsets
429+
if i == 0:
430+
# First shard: column offset stays the same (absorbs left padding)
431+
new_offset = (row_offset, col_offset)
432+
else:
433+
# Subsequent shards: shift column offset by left padding amount
434+
new_offset = (row_offset, col_offset + pad_left)
435+
436+
updated_offsets.append(torch.Size(new_offset))
437+
438+
new_global_size = torch.Size(
439+
[
440+
original_storage.size[0] + pad_top + pad_bottom,
441+
original_storage.size[1] + pad_left + pad_right
442+
]
443+
)
444+
445+
else:
446+
raise NotImplementedError(f"Metadata computation for {ndim}D not supported")
447+
448+
updated_chunks = [
449+
ChunkStorageMetadata(
450+
offsets=offset,
451+
sizes=shard.size(),
452+
)
453+
for offset, shard in zip(updated_offsets, padded_shards)
454+
]
455+
456+
updated_storage = TensorStorageMetadata(
457+
properties=original_storage.properties,
458+
size=new_global_size,
459+
chunks=updated_chunks,
460+
)
461+
462+
return updated_offsets, updated_storage
463+
282464
@property
283465
def device(self) -> torch._C.device: # type: ignore[override]
284466
return (

0 commit comments

Comments
 (0)