@@ -73,7 +73,7 @@ def __new__(
73
73
cat_tensor_shape [1 ] += shard .size ()[1 ]
74
74
75
75
# in cases of sharding optimizer rowwise, we calculate total tensor size by "concat" on first tensor dimension
76
- if len (local_shards ) > 1 and local_shards [0 ].ndim == 1 : # column -wise sharding
76
+ if len (local_shards ) > 1 and local_shards [0 ].ndim == 1 : # row -wise sharding
77
77
for shard in local_shards [1 :]:
78
78
cat_tensor_shape [0 ] += shard .size ()[0 ]
79
79
@@ -119,6 +119,7 @@ def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
119
119
aten .copy_ .default : cls .handle_copy_ ,
120
120
aten .zeros_like .default : cls .handle_zeros_like ,
121
121
aten .empty_like .default : cls .handle_empty_like ,
122
+ aten .constant_pad_nd .default : cls .handle_constant_pad_nd ,
122
123
}
123
124
124
125
if func in dispatcher :
@@ -279,6 +280,195 @@ def handle_new_empty(args, kwargs):
279
280
self_ls .local_offsets (),
280
281
)
281
282
283
+ @staticmethod
284
+ # pyre-fixme[3]: Return type must be annotated.
285
+ # pyre-fixme[2]: Parameter must be annotated.
286
+ def handle_constant_pad_nd (args , kwargs ):
287
+ """
288
+ Apply constant padding to LocalShardsWrapper.
289
+
290
+ The padding is based off of the following ideas:
291
+ - The resulting wrapper represents the padded version of the logical tensor.
292
+ - Each shard is padded based on the sharding type + dimension that is padded.
293
+ - For instance, CW shards padded on the left most col will have only padding on the first CW shard.
294
+ - Padding the top row will apply to all CW shards.
295
+ """
296
+ self_lsw = args [0 ]
297
+ pad_spec = args [1 ]
298
+ pad_value = args [2 ] if len (args ) > 2 else 0.0
299
+
300
+ if len (self_lsw .local_shards ()) == 0 :
301
+ raise NotImplementedError (
302
+ "Padding empty LocalShardsWrapper is not supported."
303
+ )
304
+
305
+ local_shards = self_lsw .local_shards ()
306
+
307
+ if len (local_shards ) == 1 :
308
+ padded_shard = torch .nn .functional .pad (
309
+ local_shards [0 ], pad_spec , mode = "constant" , value = pad_value
310
+ )
311
+ return LocalShardsWrapper ([padded_shard ], self_lsw .local_offsets ())
312
+
313
+ padded_shards = list (local_shards )
314
+
315
+ if local_shards [0 ].ndim == 2 :
316
+ # 2D Column-wise sharding: [pad_left, pad_right, pad_top, pad_bottom]
317
+ pad_left , pad_right , pad_top , pad_bottom = (
318
+ pad_spec [0 ],
319
+ pad_spec [1 ],
320
+ pad_spec [2 ],
321
+ pad_spec [3 ],
322
+ )
323
+
324
+ if pad_top > 0 :
325
+ padded_shards = [
326
+ torch .nn .functional .pad (
327
+ shard , [0 , 0 , pad_top , 0 ], mode = "constant" , value = pad_value
328
+ )
329
+ for shard in padded_shards
330
+ ]
331
+ if pad_bottom > 0 :
332
+ padded_shards = [
333
+ torch .nn .functional .pad (
334
+ shard , [0 , 0 , 0 , pad_bottom ], mode = "constant" , value = pad_value
335
+ )
336
+ for shard in padded_shards
337
+ ]
338
+ if pad_left > 0 :
339
+ padded_shards [0 ] = torch .nn .functional .pad (
340
+ padded_shards [0 ],
341
+ [pad_left , 0 , 0 , 0 ],
342
+ mode = "constant" ,
343
+ value = pad_value ,
344
+ )
345
+ if pad_right > 0 :
346
+ padded_shards [- 1 ] = torch .nn .functional .pad (
347
+ padded_shards [- 1 ],
348
+ [0 , pad_right , 0 , 0 ],
349
+ mode = "constant" ,
350
+ value = pad_value ,
351
+ )
352
+ elif local_shards [0 ].ndim == 1 :
353
+ # 1D Row-wise sharding: [pad_top, pad_bottom]
354
+ pad_top , pad_bottom = pad_spec [0 ], pad_spec [1 ]
355
+
356
+ if pad_top > 0 :
357
+ padded_shards [0 ] = torch .nn .functional .pad (
358
+ padded_shards [0 ], [pad_top , 0 ], mode = "constant" , value = pad_value
359
+ )
360
+ if pad_bottom > 0 :
361
+ padded_shards [- 1 ] = torch .nn .functional .pad (
362
+ padded_shards [- 1 ], [0 , pad_bottom ], mode = "constant" , value = pad_value
363
+ )
364
+ else :
365
+ raise NotImplementedError (
366
+ f"Padding for { local_shards [0 ].ndim } D tensors is not supported. "
367
+ f"Only 1D and 2D tensors are currently supported."
368
+ )
369
+
370
+ # Update offsets and storage metadata
371
+ original_storage = self_lsw .storage_metadata ()
372
+ updated_offsets , updated_storage = LocalShardsWrapper ._compute_updated_metadata (
373
+ original_storage ,
374
+ self_lsw .local_offsets (),
375
+ pad_spec ,
376
+ local_shards [0 ].ndim ,
377
+ padded_shards ,
378
+ )
379
+
380
+ result = LocalShardsWrapper (padded_shards , updated_offsets )
381
+ result ._storage_meta = updated_storage
382
+ return result
383
+
384
+ @staticmethod
385
+ def _compute_updated_metadata (
386
+ original_storage : TensorStorageMetadata ,
387
+ original_offsets : list [torch .Size ],
388
+ pad_spec : list [int ],
389
+ ndim : int ,
390
+ padded_shards : list [torch .Tensor ],
391
+ ) -> tuple [list [torch .Size ], TensorStorageMetadata ]:
392
+ """
393
+ Compute updated offsets and storage metadata after padding is applied.
394
+
395
+ Args:
396
+ original_storage: Original storage metadata
397
+ original_offsets: Original shard offsets
398
+ pad_spec: Padding specification
399
+ ndim: Number of dimensions (1=RW or 2=CW)
400
+ padded_shards: Padded shard tensors
401
+
402
+ Returns:
403
+ Tuple of (updated_offsets, updated_storage_metadata)
404
+ """
405
+ if ndim == 1 : # 1D RW
406
+ pad_top , pad_bottom = pad_spec [0 ], pad_spec [1 ]
407
+
408
+ updated_offsets = []
409
+ for i , offset in enumerate (original_offsets ):
410
+ if i == 0 :
411
+ # First shard: offset stays the same (absorbs top padding)
412
+ updated_offsets .append (offset )
413
+ else :
414
+ # Subsequent shards: shift by top padding amount
415
+ new_offset = (offset [0 ] + pad_top ,)
416
+ updated_offsets .append (torch .Size (new_offset ))
417
+
418
+ new_global_size = torch .Size (
419
+ [original_storage .size [0 ] + pad_top + pad_bottom ]
420
+ )
421
+
422
+ elif ndim == 2 : # 2D CW
423
+ pad_left , pad_right , pad_top , pad_bottom = (
424
+ pad_spec [0 ],
425
+ pad_spec [1 ],
426
+ pad_spec [2 ],
427
+ pad_spec [3 ],
428
+ )
429
+
430
+ updated_offsets = []
431
+ for i , offset in enumerate (original_offsets ):
432
+ row_offset = offset [0 ]
433
+ col_offset = offset [1 ]
434
+
435
+ # Top/bottom padding doesn't affect offsets
436
+ # Left padding affects column offsets
437
+ if i == 0 :
438
+ # First shard: column offset stays the same (absorbs left padding)
439
+ new_offset = (row_offset , col_offset )
440
+ else :
441
+ # Subsequent shards: shift column offset by left padding amount
442
+ new_offset = (row_offset , col_offset + pad_left )
443
+
444
+ updated_offsets .append (torch .Size (new_offset ))
445
+
446
+ new_global_size = torch .Size (
447
+ [
448
+ original_storage .size [0 ] + pad_top + pad_bottom ,
449
+ original_storage .size [1 ] + pad_left + pad_right ,
450
+ ]
451
+ )
452
+
453
+ else :
454
+ raise NotImplementedError (f"Metadata computation for { ndim } D not supported" )
455
+
456
+ updated_chunks = [
457
+ ChunkStorageMetadata (
458
+ offsets = offset ,
459
+ sizes = shard .size (),
460
+ )
461
+ for offset , shard in zip (updated_offsets , padded_shards )
462
+ ]
463
+
464
+ updated_storage = TensorStorageMetadata (
465
+ properties = original_storage .properties ,
466
+ size = new_global_size ,
467
+ chunks = updated_chunks ,
468
+ )
469
+
470
+ return updated_offsets , updated_storage
471
+
282
472
@property
283
473
def device (self ) -> torch ._C .device : # type: ignore[override]
284
474
return (
0 commit comments