diff --git a/face-recognition/source_code_final/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg b/face-recognition/source_code_final/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg
deleted file mode 100644
index eb7c28999f..0000000000
Binary files a/face-recognition/source_code_final/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg and /dev/null differ
diff --git a/face-recognition/source_code_step_2/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg b/face-recognition/source_code_step_2/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg
deleted file mode 100644
index eb7c28999f..0000000000
Binary files a/face-recognition/source_code_step_2/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg and /dev/null differ
diff --git a/face-recognition/source_code_step_6/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg b/face-recognition/source_code_step_6/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg
deleted file mode 100644
index eb7c28999f..0000000000
Binary files a/face-recognition/source_code_step_6/training/elton_john/httpimggalpmdstaticnetfithttpAFFwwwEgalaEfrFvarFgalFstorageFimagesFmediaFmultiuploaddufevrierFeltonjohnFfreFRFeltonjohnEjpgxqualityeltonjohnjpg.jpg and /dev/null differ
diff --git a/polars-vs-pandas/DataFrame_Plots.ipynb b/polars-vs-pandas/DataFrame_Plots.ipynb
new file mode 100644
index 0000000000..f55e66e654
--- /dev/null
+++ b/polars-vs-pandas/DataFrame_Plots.ipynb
@@ -0,0 +1,205 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "id": "initial_id",
+ "metadata": {
+ "collapsed": true,
+ "ExecuteTime": {
+ "end_time": "2025-08-15T20:56:04.701160Z",
+ "start_time": "2025-08-15T20:56:04.678795Z"
+ }
+ },
+ "source": [
+ "from data_generation import generate_data\n",
+ "\n",
+ "sales_data = generate_data(50)"
+ ],
+ "outputs": [],
+ "execution_count": 7
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-08-15T20:56:04.881866Z",
+ "start_time": "2025-08-15T20:56:04.723927Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import polars as pl\n",
+ "\n",
+ "orders_polars = pl.DataFrame(sales_data)\n",
+ "\n",
+ "(\n",
+ " orders_polars.group_by(\"region\")\n",
+ " .agg(total_sales=pl.col(\"sales_income\").sum())\n",
+ " .plot.bar(x=\"region\", y=\"total_sales\")\n",
+ " .properties(width=200, height=200, title=\"Total Sales per Region ($)\")\n",
+ ")"
+ ],
+ "id": "832f13776b5db08e",
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ ""
+ ],
+ "text/plain": [
+ "alt.Chart(...)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "execution_count": 8
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-08-15T20:56:05.442276Z",
+ "start_time": "2025-08-15T20:56:05.109097Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "orders_pandas = pd.DataFrame(sales_data)\n",
+ "\n",
+ "(\n",
+ " orders_pandas.groupby(\n",
+ " [\n",
+ " \"region\",\n",
+ " ]\n",
+ " )[\"sales_income\"]\n",
+ " .sum()\n",
+ " .plot(kind=\"bar\", title=\"Total Sales per Region ($)\", ylabel=\"total_sales\")\n",
+ ")"
+ ],
+ "id": "4199475a83ffc612",
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAADdAAAAs+CAYAAACTeYx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAABcRgAAXEYBFJRDQQABAABJREFUeJzs3QeUFGXePuxHBcUAYkJUEBVFxbSmNWEWc17TmvOaF3Na17DmHNaErFnXnHNCxZwVRBdFVAxgxiyG+c6v3o/9+/rKdPVMh5nq6zqnz7pO0VXTXfVUFT533ZM0NTU1JQAAAAAAAAAAAAAAAAAomEnrvQEAAAAAAAAAAAAAAAAAUA0CdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAVMQcc8yRJplkkmZfb7/9dr03E1rkqKOOKrl/xzIAAG3JpZdeWvIaZvvtt6/3ZkLNjB8/PvXp02eix0P37t3T119/ndrD/XZb9MUXX6QZZphhop/vQgstlH766ad6byYAAAANqEO9NwAAAAAAAKDRjBs3Lg0fPjy9++67acyYMWns2LHp22+/Td9//3368ccf01RTTZWmnnrq/76mmWaa1LNnz2zSZLymnHLKev8KAAAA7c4pp5yS3njjjYn+/Mgjj8zuv2iZrl27psMOOywdcMABv/vzYcOGpX/+859pwIABNd82AAAAGpsAHQAAAAAAQJWNGjUq3XvvvWnw4MHpySefTKNHj27V+80888xpzjnnTAsuuGBacskl0xJLLJE9yb9jx44V22YAAIAieeedd9Lxxx8/0Z/PO++8aZdddqnpNhXRXnvtlc4555zs855YSHGLLbbI2v4AAACgVgToAAAAAICG8/DDD6eVV145NZpLLrkkbb/99vXeDGgYX3/9dbr00kvTlVdemZ5++umKvnc01sXrqaeeSoMGDcr+3RRTTJEWXnjhtOyyy6Y11lgjrbTSSprqAOA3osl1YhP6W2OSSSbJzsXxivNvt27dslePHj2yQMb888+fhd5nnXXWiq8bgHyi9SyavyfmhBNOSB06mE7XWnEuPPbYY9M222zzuz//8ssv00EHHZQuv/zymm8bAAAAjcsdPwAAAAAAQIWDcyeddFI699xz0+eff16z9f7www/p2WefzV5nnXVW6tSpU1phhRXSmmuumdZdd900zzzz1GxbAKDRNDU1pe+//z57jRs3Lo0ZM+Z3l4sG2VVXXTVtuummaZVVVhHUAKiRe+65J91yyy0T/flyyy2XNtpoo5puU5FttdVW6bTTTksvvfTS7/78iiuuSLvuumvq169fzbcNAACAxjRpvTcAAAAAAACgKP7973+nPn36ZE/br2V47vfEBP777rsv7bfffmmXXXap67YAAP9j1KhRWXtstMXONtts6aijjkofffRRvTcLoNDGjx+f9t5772aXiYegUNlm1hNPPLHZZfbcc8/0yy+/1GybAAAAaGwCdAAAAAAAtEsx2TgmZDX3imWgVq1z22yzTdpyyy3Thx9+WO/NAQDagQjOHX300WmuueZKxx9/fNYmC0DlXXDBBenNN9+c6M9XXnnlrIGOyoqw+BJLLDHRn7/yyitZEx0AAADUggAdAAAAAABAK4wZMyb169cvXXnllfXeFACgHfrmm2/S4YcfnhZffPE0fPjwem8OQOHG2AgpN+ewww6r2fY0mkMPPbTZn0eQ/Mcff6zZ9gAAANC4BOgAAAAAAABaKNrmIjz38ssv13tTAIB27tVXX01LLrlkuuuuu+q9KQCFcdZZZ6WxY8dO9OfRkLbaaqvVdJsayYYbbpjmm2++if581KhR6aKLLqrpNgEAANCYOtR7AwAAAAAAANprk8G6666bRo4cWfafnXTSSbMJ8n/4wx/SQgstlBZccMHUrVu31Llz59SlS5c09dRTp/Hjx6fvvvsuffzxx+mDDz5Ib7/9dho2bFgaOnRoeuaZZ9K4ceOq8nsBAPXz7bffpo022ijddNNNaZ111qn35gC0a59//nk65ZRTWtWQRuvEve/BBx+cdthhh4kuc+yxx2Y/n3LKKWu6bQAAADQWAToAAAAAAIAW2HPPPdMLL7xQ1p9ZdNFF07bbbps222yzNOussza7bEwejNf000+f5p133v/1s19++SW98sor6aGHHkq33357euyxx9JPP/3Uot8DAPi/tttuu7KW//nnn9MXX3yRvSKwMWLEiPTjjz+2aN0Rov/zn/+cnnrqqdS3b98WvQcAKZ188snZuDwx888/fxZaprq22mqr9Pe//z2NHj16os3u55xzTjrooINqvm0AAAA0DgE6AAAAAKDhrLTSSqmpqanq67n00kubfcL2BEceeWQ66qijqr49QOVEaO2yyy7LvXzPnj3TiSeemE2Gn2SSSSryFP9or4vXfvvtl00KvfHGG9PVV1+dHn744SxgBwC07lq+Nb7//vssaP/444+niy++OL3++utl/fmvvvoqbbrppumll15KHTt2bNW20Ni233777AWN5pNPPklnn312s8sMGDCgIvdnlRJ/V/XOO+9k54z3338/jR07NjsfxDnls88++z/LTzHFFGmaaab576tr166pd+/eaZ555kl9+vTJXtF2Xu/zSKx/n332SQceeOBElznppJOyh9REGzsAAABUgwAdAAAAAABAmQ0zBxxwQO7lt9lmm3ThhRdmbXLVEhMld9ppp+wVT/UfOHBgGjRoUBozZkzV1gkATFynTp3Ssssum70iMHD//fenQw89ND3//PO532P48OHptNNOS4ccckhVtxWgiM4///z07bffTvTnnTt3TltuuWWqt3fffTfdcMMN6YEHHshC119++WVZjaURrPt1uO6JJ574X8vEfejSSy+dll9++ezVr1+/7BxVj2bXww8/PNvm3xO/wyWXXJL22muvmm8bAAAAjWHSem8AAAAAAABAexItbyNGjMi1bDxl//LLL69qeO732u7+8Y9/ZBMxr7jiirTIIovUbN0AwO/r379/evLJJ7MQfjltR9FgG+1DAOT3ww8/pHPPPbfZZSI8F61t9XLPPfekVVddNc0xxxxp//33T3fffXdZ4bm8vvvuuzR48OB0zDHHZOeiGWecMWs4/fe//12V9U3MTDPNlDbaaKNmlznrrLO0qQMAAFA1AnQAAAAAAABluOCCC3Itt/rqq6czzzwz1UvHjh3T1ltvnV566aV03nnn1W07AID/d24+5ZRT0kknnZT7z4wbNy5ddNFFVd0ugKK56qqr0tixY5td5i9/+Uuqh2HDhmVNcGuttVZ66KGHUlNTU03X/80332SNdxEgjFDb559/XrN177rrrs3+/M0330y33XZbzbYHAACAxiJABwAAAAAAkNNbb72VnnjiiZLLderUKQ0cOLCshplq6tu3b703AQD4/x144IFpxx13zL18tNkCkN/pp5/e7M+XWGKJtOiii6ZaiwebLL744umxxx5LbcH48ePTzz//XLP1rbzyymmeeeZp1XcHAAAALSVABwAAAAAAkNN9992Xa7mtttoq9erVq+rbAwC0T2eccUaabrrpci378ssvp5EjR1Z9mwCK4N57702vvvpqq5rQqmHAgAFpzz33zEJrjSoeMLPLLrs0u8yQIUPSs88+W7NtAgAAoHEI0AEAAAAAAOT0yCOP5Fpu6623rvq2AADtV5cuXdK+++6be/nBgwdXdXsAiuL8889v9ucdOnRIf/rTn1Ktm0fPOuusmq6zrdp8881LLnPBBRfUZFsAAABoLAJ0AAAAAAAAOZVqMggdO3ZMyy67bE22BwBov3bbbbesjSePp556qurbA9Deffrpp+muu+5qdplVVlklTT/99DXbpquuuiqdeuqpLfqz3bp1y7Z3r732Sl27dv3d5vONN9449e/fPy244IK5m03rafbZZ09LLrlks8vccMMN6bvvvqvZNgEAANAYOtR7AwAAAAAAqK8ffvghDR8+PI0cOTKNGjUqffbZZ+mbb75J3377bZp88snT1FNPnTp37px69eqV5pprrtS3b980wwwz1HuzC+fzzz9Pr7/+enrjjTeyf/7yyy+z11dffZV+/vnnNOWUU2avGWecMc0222zZpLOFFlooTTvttPXe9IYSx0kpc845Z3bs8P+MHz8+vfnmm+k///lP+vDDD//X/h1jTadOnbJXtPHE/h2v+eabL/ssaZmmpqbsM58wtn/wwQf/HdtjTJlqqqmy8X3WWWfNPuc+ffqkeeaZJ7UXca6K/Sl+xzFjxqSPP/44+93inBZivIzfMV7xzzPPPHN2HotXjx49suYRaE4cJ7GPvfXWW9kxNHbs2OwYileI4ydesT/FMRRjVuxfUI6ZZpopCzwMHTq05LJ5lqmVTz755L/HxzvvvJOd02MMjrBDnM/j2IhwShwb8Vp44YWzfw+lxBgbD6yYMPZ+8cUX2b/79b4V9z+xX024N43rR5jg3//+d/rxxx+bXWaTTTap2fbEdWqE38oR+/eOO+6Y1llnnbTooov+99/ffvvt2THxa1deeeXvrnPYsGHpySefTI899ljWoj7hGrmtiO/g2WefnejP47xyyy23pD//+c813S4AAACKzX8ZAgAAAABoQBGYu/baa9NDDz2UTVoqZzJVtGTEJPHll18+e9L5aqutliabbLKqbm/RjBs3Lj366KPp4YcfTs8991wWnPvoo49a9F4xcbRfv37Z5Lo11lhDoK6Kvv7662xyeCmNHjCN0MkLL7yQ7d+PP/54Nt7EBOiffvqp7PeKloVoJ1hzzTWzfXzeeeetyjYXxbvvvpuuv/76NHjw4PTEE09kYdxyREA3xpMNNtggbbTRRm1qPIlx884770x33313tl/FPtVScc7q2bNn+uMf/5iWXnrp7LXYYoulKaaYoqLbXDRxXMe+FcGGOK4jDBsh2HhF82YEGCIMFNcIEQiK64P4bNvTNUKcj6PxJMavp59+Ohv3yxHh3wnXRzFmRYCzPYsx5MEHH0wvvvhiGjFiRPaK8Gp8LvGKIGqEWeJ7jyDhEUcckVZYYYV6b3a7s9JKK+UKx0VQrV4ivBRjcLQ6xRgc+0I54sECiy++eFp99dXT5ptvnuaff/7UHsaD+++/Pxv7IiwY59gY7yLMFcHseMBIND3FtckCCyyQXa/EuNfej/t6eOaZZ7Lrlwj5xHhTzjXjpJNOmgU0V1xxxSyQs9xyy+VudWzL4t4wrnni84ggVFz3xLVQ7IMh9rMIqc4xxxzZQxCi/To+g3jISqO7/PLLm/15XJdsuOGGNdueODf+NvTW3HXEKaeckjbbbLNWXT917949e8WYNCGMdscdd2TXOPfcc0+baHb705/+lA4++OBml7nssssE6AAAAKioSZri8ZMAAAAAAFTcpZdemnbYYYeSyx155JHpqKOOqvr2xETEq666Kp1xxhnp5Zdfrtj7duvWLe20005pv/32y8IXlfT222+3mQaq1vx1evzZePr7zTffnIUWX3rppfTLL7+kSovJvDEpee+9987CILUWEzhLTe6OyZ+xXHsU7UMxEbGUpZZaKj311FOpkbz//vvZhMyYaD5kyJBskmY1LLPMMmn33XfPJlLWukEsxumjjz66TYznvw0sXnfddemf//xnNs5U6j/9Rdhhiy22SIccckhdgw7PP/98Ouuss7LfsZrNGRGei6BmjKHrrbdemmaaaaq2rvYkxvQJn38c5+WKcMm2226bHbdtNQD7/fffZ9ds559/fnrllVcq9r4RLIv2mAMOOKBmgYbtt98+m2zenEsuuSRbbmIiHHTFFVdk7xMPWYgxJq9S791W5LleCbWaShHH2IABA0ouF6GgGAcjsForEew79dRT00033VR2oLQ5EaaL4EQEKCIA1Zau9WI/HjRoUK7W4d+7Fu/fv3/WNhX/25w99tij5AM0YlyKgGot7ku32267bLlaiQDPRRddlM4555ysTbZSYryNzzZeEXKsZRA2AoDNiRB6LDcx0ZoW7WkDBw7Mrulacr8YwfW4N49zbyM2YkfwtdR168orr5zdk9dCXDvF32eUasQL8QCLiy++OAtGlnP+KvdcFQ+EmfD3Qq+99lr276LJudJ/l5NHtOvF341MTIQIR48enWaZZZaabhcAAADF1Xb+JhIAAAAAgKq58cYbsyfTx6TmSobnQkz8POGEE1KvXr3S4Ycfnk1E539EY8BBBx2UTXSLNoSYgBwtFtUIz02YiBoTX2NScjy1/q233qrKehrV+PHjcy33ySefpEYQv+cFF1zw37aLmPwf7TTVCs+FmEwcE4Kj6SUm8ze6CLnE2L7llltmjXOVDHvE/h4NHvFZx7kjJtbW0nvvvZeF2ZZYYons96xmeC7E+996663ZZxnB8AgktncxST8CN829omnt98T3Hd/73HPPnU2wbkl4bkKDWYSDYjJ7hDNa+j7VerDAmWeemU1sj4BfJcNzE4JoEQyJz3D//fevaPioGuL6LQLA0X4Tn0cEwcsJz9FyeZtrY4yP/aoWIlQRYeJFFlkkOxdUev+NcHRcqy600EIlQ0e1EK1ef/vb37Lx4NBDD21ReG7Ctfhtt92WNe3FwywiMDUx0eYX92jNvWr1fddS7McXXnhh9ln/9a9/rWh4LkRTYIT/4/7r9NNPbzfjWAQ3e/funZ0ro+WxpfeLMXbvsssu2XtF+L3RRDCslPXXXz/VypVXXpkrPBfbFA8jaS48VynRXhj7SDQKRytdBArr1dpY6ruI4zdCpQAAAFApAnQAAAAAAAUWLQobbrhh2mSTTbLmr2qKJ5kff/zx2UTYaKBqdNHIFxNnTznllGwiZ61df/31aeGFF07/+te/ar7uourUqVOu5T788MMsmFFkMfE9mgAiZPHoo49WLRQ6MSNGjMhaa6Ihbdy4cakR2zUiHBVhwmoHZWOiezRRzTfffNlk/lq49tpr04ILLli3id8RgKj0hP72JD7/vn37Zt97pcay2I8ihBMtdLVsOJqYp59+Ogub77vvvmnMmDFVXVdMnI8QR4QIY7xsix588MEsLBstm404praXAN2E6+1qBykPO+ywLDgXwYpqt/ANHz48O5/95S9/qdtDOCLkFmPecccdl43/lXyQxqqrrppdKxUxCNcScW5dYYUV0m677Zbdp1bTZ599loWXoxl62LBhqa2KxvXYT6KxNJq2Kv0ggk033bSh9r8Yt0qJwFit5Ll27tGjRxYSq3W7doTm1llnnayNr5zzUCXl+S5uv/32mmwLAAAAjUGADgAAAACgoKLpbMkll8wadWo9MXKVVVZJ5557bmpk1WzhyismS+68885p1113rXnAqYi6dOmSe3J7NKUVWUwwbwshwQj6RENZtQPCbck111yT/c61buyJiegRxo5mnmoGKiKI3ajByLYgGsji869Wk2acl3bYYYesYSdPI0s1RKNev379Kt44lyfMECGJaKVrS6KFb4011tBaW0fljKmTTjppVYM80ZgczdK1Pj4HDhyYHZdxnNTSsccem1ZbbbWqrTe+22jrjZBgtHY3svvuuy+7N33sscdq/tCHpZdeuk02F0eoOq7pIsBULdFqFsd1IzRkx0NMXn755WaXiYa3eMhMLURzZwRp81z7RitcI1pmmWVKPqQmGhmjJRQAAAAqQYAOAAAAAKCA7r///mwSaiWfYl+OCNbstddeWQsb9XfRRRelP//5z0J0rTTFFFOkbt265W4ApHah3RjvopWu6A455JDsWK5nk8iJJ56YBXOrMZ5EkOfwww+v+PuST5y3o4GsFqKNboMNNqh6m9Zvr0223nrr7NqkXgHgWO8+++xTs8+5lAMOOCBr4fv555/rvSkN7dNPP829bNeuXauyDRFqiiBPPICjXiLotPzyy2dBvmqLc9gee+yRjjjiiJpcHz/33HNZUOSDDz5IjSgaTddee+30xRdf1GX9cd0UDwE466yzUlsR9wr9+/cv6/hvqQiVRVC6LTzgpZruueeekoHkFVdcMWteq4WhQ4eWvN6I4Fy0BDby/XWMjc2JQHf8/RYAAABUggAdAAAAAEDBDB48OJuUHg1R9RYtLwcddFC9N4OU0nXXXZcOPvjgem9GuzfPPPPkblJ59913q749/I+YkL7eeuulzz//PBXV3nvvnU466aTUFlx88cXpL3/5S8VbWPbff/+Kvif5nXzyyTVvjr377rvTRhttVJMwW0y+3myzzdJVV12V2krT33HHHVf37/y0006r6zbwP/IGaCJoUKqppyWi0XTNNdesSZCnlAjPRcCl2kGzCI6ef/75qZai5TGuVWoZHG4Lrr766rTjjjvWPagbwaoBAwak8847L9Xbvffem7baaqs0fvz4mq0zwrHRSl5kcV1RSrRB1kqeZtcY76oxrrcnK6+8csll7rrrrppsCwAAAMXXod4bAAAAAABA5UQD04Ybblh2eK5nz55p/fXXzyYv9e3bN80yyyxpmmmmST/88EMWSHn99dfTM888k+6444705JNPlvXep5xySpp99tmzZhv+t44dO6ZFFlkkLb744mm++eZL8847b+revXv2is8/JtPFZM/4DqKx4bPPPksvvfRSevbZZ9NTTz2VXnvttbLWd+qpp2ZPeN94442r9jsV3ZJLLpkef/zxksvFsbPllltmT8ufcsopU6OKY3/ppZfOxpX5558/G2tmnnnmNP3002f7dxwD0YYR+/e4cePSG2+8ke3fMd7EPh6fYznj33bbbZduu+22VDTREvXPf/6zrD/ToUOHtOyyy2bj+mKLLZbmmmuuNOuss6app546+1m0sXz44YfZZx779O23355effXV3O8/aNCg7HuNEEJrxQTymFxfTgtQ/A4xnsXv16dPnzT33HP/9/eLNo/JJpss27div4r/jfFz+PDhWRvIK6+8koYNG5a+/vrrVm97USacR7thHnHsxrEcbZzxWUcQ5JNPPsmuEz766KOy133fffdlYcx//etfqVriPBrj8c0331zWn4sxKibaRyPWoosumuaYY47s+ij2r0knnTTbf95///3sd49j6JZbbkmjRo3K/f7RfBWfZT3OyXfeeWfu7zyuR3r37p2N3/HP8bt/9dVX2fcdx1T8M63zn//8J9dycf6stKeffjprBis31BXnlGi0iuuiOBfE/jHttNNm1zzff/99dl6P8Eg0rz3wwAPZ9VDesFA8gCDCtRGsjtBgpZ1++unp7LPPbtGf7dKlS3bOmW222bLjIcK5cZ6J3zVepUJiEWLaYYcd0rXXXpsawZAhQ7Jrs3Jb/uKeKMKGK6ywwv8658Q97oRzTrQmxrVLnNPLEfeksb/G+9fDiy++mI37se+UMsMMM2Tj74Trm/j9Y+wdO3Zs1sBcqm3tt2K/W3fddbM21qKJMH6elrJaBujyXBf16tUrNbo8Abo84UgAAADIpQkAAAAAgKq45JJLYkZbydeRRx5ZkfV9/fXXTX379s21zgmvBRZYoOnmm29u+umnn3KvZ+jQoU2bb755Wevp2LFj0xNPPNFUSfG51eqzbYmddtrpd7epd+/eTQMGDGi6//77m7799ttWrePZZ59t2nnnnZumnnrq3N9F9+7dmz777LOmaujVq1fJ9Y8aNaqpPbv99tvL2vf79+9ftc+7noYMGfK7v2/si5tuumnTxRdf3PT++++3ah0ff/xx0ymnnNI0zzzzlPWZX3311U3VUK8xJz7Lcn7/Hj16NJ166qlNn3zySYvGlPXXXz/3uiabbLKmxx9/vNW/47nnnpt7nT179mw666yzmsaNG9eqdcZ5L/bjAw88sGm++eb7P+v561//2tTerbjiiiU/z1tuuaVpttlmK/mZH3PMMU2vvPJKs+t74403mk4//fSmeeedt6x9Nl4XXnhh1T6HI444oqxtif3hggsuaPrqq6/KXtcDDzzQtPzyy+de1zTTTNP05ptvVux33W677Uqu87TTTsuuBZpbpk+fPk3/+Mc/ml544YWmn3/+udl1xn4R+0fsR3Ht2x7kuV6JV63kPWY22GCDiq73vffea5plllnKup7fcccdm55//vmy1xXnpDhHdu7cOff6dt9996ZKi/uRDh06lDUmxL4d40j83r/88stE3/vLL79suvXWW7ProMknn7zZ97z++utret2c5740xo9K+uCDD0qONb99Lbfcck0PPfRQWet58sknm1ZbbbWy1tO1a9eKjr15z7m33XZbyeva+AziuijOqaU+34suuqhpmWWWKet3n3XWWbO/Nyia5557ruTv3qlTp7L+3qO1jj322JLbdNhhh5X1nr83brR3sT9OMskkJT+rESNG1HtTAQAAKIBJ88XsAAAAAABo6w4++OCsCSSPaOY55phjsjazaKyL/5/XggsumK655pp07733Zm0AecQT9rfaaquym/GKIhoDdtttt/TEE09kbQFnnHFGWm211VrdTLbEEkukiy66KGuiW3311XP9mTFjxqRjjz22VettZP3790+dO3fOvXw0ISywwALp0ksvzZoRimrFFVdMV1xxRdaIcd1112XtKtGW0Rozzjhj1rwW+/dxxx2XJp988lx/Lv5MOc11bVk01cTYkUe09MSxHY1y+++/f9Za0pIx5dZbb83aqfKM79G0s9NOO7X6887brrfzzjtnv98+++yTtQC1Rpz3+vXrl04++eRsH4sGwwEDBrT6fdubww8/PGtR+z3xWcT5KlqVoi1toYUWava9ogUwGgnj87zsssvKasuKPxffQaVFc27ec178vhdccEHWThiteNEuVa5VV101a82KMT/O/aVEi92uu+6aaik+j7gW+D1zzjlnNoZHu9Pf/va3rHkvGueaE/tF7B+xn6y55ppV2uri+uCDD3I30EVjcaXE+L3JJptkTaR5RNtcHNvRFhmtpuWKc9JRRx2VvUe8Vx5xPD788MOpUqItMdoo816P/XoMjPum+L0nmWSSiS4f14fR6B3HUHynm266abMtaEVvQd1ll10mOtb8XuPnhRdemLXK5Wmj+rVoOo7r7SuvvDL3uB0Nidtss03ZDW6tFdeocR3ze+KaJNqX4zPYY489snNqc6IRNa6L4v4yfve859wYc84999xUNNFgXUq0GZbz9x6t1dx48et9sdHF9VK0mlbiOwYAAIBSBOgAAAAAAAogJhOdf/75uSco3nbbbdlk5w4dOrR4nRHYev7559O8886ba/lRo0alf/zjH6mRzDTTTOnEE09M7733Xvb9LLPMMlVZT8+ePbNAY4RQSk10nzAh+eOPP67KthRdhJS23Xbbsv5MTE6PQFlMhI3gwttvv52KIPa1mIgeQdyY4L711lvnCoyUKya6HnbYYVmYLM/kypgYPGjQoNTeRfA49pvx48eXXHaOOeZIzzzzTBaGijG+tdZee+1sfI+JxqVE0OaUU05p8bpefvnlLFBRykEHHZQFhuMYrIZ55pknC0rEeB3/G59pI3j11Vd/998vvPDC2TEXocJyrxViwniMk/HdrrDCCrn+zLfffpuF1iopJqVHOC1PQOIPf/hDeuWVV7JtqMTk+u222y4LQkTAoZSHHnooCz/Uyueff/67/3777bdPQ4cOzUI/eSb9/1aEnLt3716BLWws55xzTu5ll19++Yqt99RTT8320VLieIgx8Z577km9e/du9Xpnm222dNddd6W//vWvJZeNYzdC5BH2q4RyrsFiTJgwBuYN8P9anEMiSBcPF/i983I8cODTTz9NRXXjjTdmYfy84cohQ4a0OkwcD2t58skncwfJYtm4rqil3wuKd+zYMZ155plZ+HqppZZq8e8ewbs4vvKIe8aiPdjjueeeK7lMXNvUUp77orjuJKVFFlmk5DICdAAAAFSCAB0AAAAAQAHEJNRffvml5HIxCT7ahSIcUQk9evRIjzzySO6gQUzWLUp4qJQdd9wxa6yIZsCuXbvWZJ177rlnuuSSS3IFFQYOHFiTbSqiaEpqyWTqd955JwuuRsNPtMhE2OnBBx/Mvo/2Jo75CFpcddVVuSY8VkI0+cXk4giMlhITkdu7aEaLQE8pEWh4+umnKz4peML43qtXr5LLnnbaaS1u0Bg8eHDJZeJ4iRbCWogGoQhMxKtR/fGPf8y++9aGZSLEcN9996W11lor1/IRxL3ppptSpRx44IG52rWivSiCB3n29XJEY2/8TtNOO23JZY8++ui6hhn+/ve/Z9cP1QhBM3GfffZZ7iaoOPflDaSWEm3I0QaXJyj/73//u+LjYbxvnKejZauUaHKLEFprjRw5Mve1wbLLLluRMTDEwwXuvvvuhjq24gEA0YSb95wb18LRgFvJcXe66abLtfyhhx6aNRPWS7SRTwiUtiS4/GvxoI6855zRo0enBx54IDVagK5Uk26l5Qk0xlhTtDBjS+S5jxGgAwAAoBIE6AAAAAAA2rmYdBhP0M8jQg7RHFdJMUE+QnlTTTVVrgmVJ510UmoEMfl2mmmmqfl6o/Unz0Tnyy+/vCbbU0QxoTpPc0pzotXk+OOPT6uttlo20XXRRRdNu+yyS7rwwguz5q84VtqyCFf17du35uuNiag333xzyUasCAc88cQTqb365JNPco2VM844YzYxv1u3blVr0bz22muzdpTmRHju7LPPbtE6XnzxxZLL7LXXXq1qTKW8cGxM5q9U8DsaA6OJaLHFFssdZsjzQIBSotXw4osvzjWeRytvtcItffr0ybUdMWZdffXVqR4ifB8BPmor2tV233333OGdbbbZJlfLcB4R5v/+++9zPfgiGgmrJZrt8gSnojkuT5Nkc0444YRcja7RRnr77benLl26pEpZaaWVspbJSn1/bV3cY8RDI/KIz6XSD2KYb775smuXPJ93hFjPO++8VA/R7hjXtHEvUCkRosvb+H799denovjuu+8m2qhbzwa6uAYoZdy4cdnfpTS6PONA3DNUqpEUAACAxtUYf0MHAAAAAFBgJ554Yq7lIji3zz77VGUbYjJaTG7NIxpOxo4dW5Xt4H9EU1OpJ96PGDEiC2rRMsccc0zFWgyideCll15KgwYNSrvttls2mTwaOaIFakKr4PDhw1s9ebwooo1s7733LrlctOa0VxGeKxWqiKaSmHgdk/2raamllsrCnqXE/tuS4FO0ApWywQYblP2+lC9CihF2m2GGGSresBPNcnlC5XFuikBbJRrVSu2PEfyPAGoERatp4403zsbyUiJAXWtxvokQE/W5jrjuuutyLRsBzzxtbXkMGzYs13p33nnnrHG3mqLNN7al1NgQ54nWtGVFE2UEtUqJsHgEr6affvpUaRtuuGFDNJvGtWreh6XEgyPWX3/9qmxH//79s/B9HqeffnqucGWlxb3zGmusUfH3jbEiT1Aszn9FEa3YeVrc5p9//lRL0Z4d93SlHHLIIblCzUWW57uJ1vZ4QAIAAAC0hgAdAAAAAEA7Fk/3jwa6PBNCzz///KpuSzRy5Xly+A8//JBrEistF6GAAw88sORyrZmM3Og6deqUBUKigbEa4jh59tlns1aMHXfcMZuAOd1006W11147nXnmmQ0/eTAmmsbE+yLu319//XW64IILcrVN9uvXrybbFOHrWWedtdllRo8ene67776y3/vzzz9v9ucRrIh9n+rbf//9czfFlatXr165gpihtYGuUaNGZUHAUuI8We0A6gRHHnlkFiRsTrRm1nJsj3amCL6WapiksiIkEYHKo446KvefiWbGUg9GyCvaqEuFS2PMrVVj9Jxzzpk9PKCUf/3rXy1eR/zZuK4q5YADDsgagav5gIto+SyyIUOGpDfeeKPkchFSPOWUU6q6LXHO6d69e8nlPvroo6x1sNYPg8hzr9bSZru//OUvuYKleR5i0B7k+T3ic5lllllqsj2/Xmc8xChPC+0WW2yRKwRYVNFunsdbb71V9W0BAACg2AToAAAAAADasSuuuCJXK9VOO+2U5pprrqpPxM47Of7yyy+v6raQ0lZbbZW1CTUnT/iSiZt77rnT/fffX7PJmOPGjcvaIqIRpm/fvtmT+mMCflEmv5ajW7duaa211mp2mddffz198MEHqb255pprshBdqZBs3vG2EiKsmKeJKBrxylUq1BDNS1RfhBkOO+ywqq5j9913z8bNUh599NH09ttvtyosU+raKAKhBx10UKqVaLmLMHQpt9xyS6qVrbfeOteDD6iM2CfvuuuurNUzwvF5xfk+wq2V8OWXX+Zqn4sGx2q0sE1MNLOVCsXfeeed6ccff2zR+1999dUll4nf9+CDD07VfvhCNA8WWd57vBh/p5122qpuS1w/HHHEEW3y3vTkk0/OwlXVstlmm5W8DwzPPPNMKoI81wzx0JNqfuYTs8022+Ra7tZbb83CdvGApEYUx2ueMaE114cAAAAQBOgAAAAAANqxPA0rk0wySdpvv/1qsj3RjhWhnlJeeeWVNGLEiJpsU6OaccYZS7ZoPP/88zXbnqJaaKGF0tNPP52WXHLJmq87AmJHH3101qAUYbKWtH+1Z3kaHdrjPn7JJZeUXGaXXXYp2QhXadFmMsUUUzS7zL333lv2+5aaLPvxxx+n8ePHl/2+lB9g6dKlS1XXEZP584b0Ikja0pDSpZdeWnK5aP6JIGotRVNvKffcc0+qlUqFsmi+bS6aBaPNbd55503rrLNOdg1cTvDyjjvuyIJXlXDttdemb7/9tuT1YzTk1VK0622yySbNLhPB8scee6zs9x46dGiuZsdowat2oCtsueWWuZuW2ptoNswTpI+gTJ7WwUrYYYcdcoVB4wEV33zzTU226Y9//GNaZZVVqrqOOI5XWGGFkssVpdE6T+isXsfdeuutl43/eQwePDi7t4ym7fb4EJDWyvMdCdABAADQWgJ0AAAAAADtVIQKXn755ZLLrbzyylnAppYhizweeOCBqm9Lo1tiiSWa/flnn33WkJPzKq1nz57ZBPkjjzyyZMCoGiIwEqGLNdZYI/Xr1y/blkZQav+eMHG+vY3rTz75ZMnlNt9881RrnTt3zpqTSk1gLrcRMSZ5l5qQH02PVDfYtvPOO9dkXVtssUXq2rVr1ZrYIjT7/vvvl3ywQLTz1Fpci80+++zNLhPHf4Suqi1C3wsvvHDV19Pebb/99mW9omlo/fXXz4IrCy64YBZKXW655bIwxBtvvFHWuiPMFcfBnHPOWbHfJxqOStl4441Tx44dU62tttpqJZd56KGHyn7fPMHuGBPy3r+0VjRg1Wq8rbUXXnghu7fIcw1Ti7BimHLKKdO2225bcrloN3zkkUdqsk152kgr4Q9/+EOuh3EUQZ5QVQR162HSSSdNp556au7lv/rqqyx0Pcccc2QPJxo4cGB67733UiPI8x0J0AEAANBaHVr9DgAAAAAA1MWDDz6YBWdK+dOf/pRqKRok9t1335LbFtu/xx571Gy7GlGeSdfRPFDrJquiBlCOOuqotN1222UNS9ddd10W/Km1xx9/PAvR7bTTTun000/PQk+Nvn+3JxGELDV2RgBn6aWXTvUQoZBHH3202WVefPHF1Lt379zvOcsss5Rc5rjjjstaFmMSMtUJruT5HioVZth0003TRRddVDIIF5PIyx3DokWolAg01eu8F8fQlVde2WyIY9iwYbkCwq1Rqu2L/3HZZZfVZb19+vRJt912W+7Wojx++OGHrN2olHqES0Oetqw4v5QrT+guAqWlwq2VFGNgXDMWTd6Ho9T63jQ+7zPPPLPkcnFvGoGlaoqw5gYbbJBqIZrMSinKg1TyNNDVK0AX1l133ewesZxzSlwPxDXNhOuauE6L9sI8IdX2SgMdAAAAteC/MgEAAAAAtFPPPPNM7glbtRST0xZffPGSyz399NM12Z5GFs0njTJxsi2Fuv79739njQ677757ru+g0iKANWjQoLTYYoull156KRVVEffvPJPP11tvvWwCdj1E8KjSAYcIfJYSrVx5gtm0TDRm1VKe8MBPP/2UhgwZUpVjqFbhhVodQy2x6qqrVn0dtKydbNddd82u8SsZngvRTvvtt9+WPK+utNJKqR4ieD3zzDNX/NjI0+pa63ulvn37VrRZsD3dm0aIutbjzzLLLJNmmmmmNnFvusACC6Tu3btXfT0T1lXK2LFjUxFEg3Mpedpvq+mCCy7I9sWW+vDDD7MW0Xi4wG9Fg+a5556bXTd98803qb3K00yZ57sGAACA5gjQAQAAAAC0U6+88krJZaJNoZaNCuUEIt5///1CP0G9LZhiiilKLjNmzJiabEujmWeeedJ5552XTXa8/PLLs9BTnu+jkt588820/PLL524EaW+KuH8/99xzFWkUqZY8LWWx35VjlVVWybXc2WefnQWfRo0aVdb7U1qtwwwrrrhiFhQqJVroyhEByzwBm6IdQ+Waeuqp0x/+8IeqroPyxPEQQdaXX345XXjhhblCBNU4v0SwK8+xWa/jI0Lx3333Xe73Gz16dPriiy8qct9SjzBtEe9No+2v1tfD8dCBPJ/30KFDq74tiy66aKqV6aabruQyRbkXzxMai/BmPXXq1Clrms7TtlmugQMHpr322it77wgKxsOM4sETsb5yxsx6y/MdlQqCAwAAQCkCdAAAAAAA7dSwYcNKLrPUUkulelh66aVzLVeLiYrtwUcffZTuvPPOdOqpp6bddtstrbnmmtnEt169emWTH6eaaqrUoUOHbAJoOa8ddtih5Lo/+eSTmvyOjSq+u2222Sbddttt2Wd9++23p3322SctssgiNZmk/vXXX6d11lknDR48ONXLDz/8kJ566qlscudBBx2U/vSnP2UTmaNdJxpBOnfunCaffPKy9+88LWztaf+OCa7/+c9/Si43//zzp3qZYYYZSi7z3nvvlfWec801V1piiSVyLRvHT+w3W2+9dXr44Yc10lXoO+3Tp09N1znNNNPkCrHluc75tTfeeON3m1mKfgyVK37/eoak+N+Nb3HtF995NAvlaYxqqTzh0noeG9U4Pl599dWSy8S1RIS6au2Pf/xjKpIItbz11lvt+t70yy+/TO+8805Vt6OWx1iepua4Rm/vfvnll/T999+3+QDdhO8kHmwSYbdqiQbfF154IZ155plprbXWSjPOOGPaYostsnNM/Kyt3zeX0p4b9gAAAGgbOtR7AwAAAAAAaFnQYuzYsSWXm2+++VI95J0c+Pbbb2dNNI1m/Pjx2eS5CIPce++9dW1Uak9PpW/vIjSy7rrrZq8J4bZohHn22WezpqV4jRw5suKhoNjfNtpoo/T0009n4aNaiEnrMVHzjjvuyH6v2IZ6aE/792uvvZZ+/vnnXA1BbTncEA1B5TriiCOydrk8fvzxx3TVVVdlr1lnnTVtuOGG2QThOJdEGJPyLLzwwnVb70svvdTq8Eu5gbsYh3v27JmKdgyVo1bnAVKuwM6gQYNSjx490uabb17VdeU5Pup5finn+IiW3zzimqqU2WabLRsXaq1e92jVEsGzPNev7eHeNB5gUi1xrNdKnmuiPMGzti5vI1lbCNCFjh07pnPOOSd7oMiee+6Zhg8fXvXP59prr81esf/tvvvuae+9926T18x5vqMIfUZoctJJ9QUAAADQMgJ0AAAAAADtUN7J1XknmFZa3vVWe5J4W/P++++ns88+O11yySXp448/Tm1BESZOtlcxYXullVbKXr+eTB+tARE6i8DbE088ke03rTVu3Li05ZZbZk1wMXGzGqLV4Morr0znn39+euaZZ1Jb0J7279GjR+daLlr72rI8DWC/tf7666dlllkmPfnkk2X9uTiHnHfeedkrWjqjuTPaDeMV7zfLLLOUvS2Nptbtc+WEuMptYstzDEVwua1Pum7JMVQOx0Xb8vrrr2ftQBEKvvzyy1PXrl2rsp48x8eBBx6YvYpyfHz44Ycll5l77rlTPdRrvY16b5r3XFfte9Ppp58+taUwUp4HNxQlQNepU6fUlsT93yuvvJLdO5100knZgzSqLa6rDj/88HT66adn/xut6G2pkTZvyDFa6NpiABAAAID2oW3/1wEAAAAAAFo8IbSek6Rj8lOeCcB5f4/2Libsx4TkmCx78sknt5nw3IQ2J9qOLl26ZBMq999//3TddddlEx1jQuWZZ56Zll9++TTJJJO0+L0jmBfvUw033HBD1u6xww47tJnwXHvbv8sNC7VVLW39u/7661P37t1bFeCM0GlMCo5Wj2inm3POOdPWW2+dLrjggiykwv81xxxztNn1RvC3nP2p0Y+hvLp161bV96dlopV42WWXzRqwKi3CBl988UVqtOMjz33GzDPPnOqhXutt1HvTvOut9r1pWwtxFUE0kuUx+eSTp7Ymwmvbbbdd1kIX7fRbbbVVTRoxP/3007TffvulJZdcsk1dH08xxRSFe0AKAAAAbY8AHQAAAABAOxSTytv6JOk8E0Pz/h7t2aOPPpoWWmihdOqpp7bJyV5NTU313gRKmG+++dJf//rXbF8aOXJkOvjgg7OgXUscd9xx6fPPP6/Ytn322Wdp0003zV5vvvlmxd63EY0ZMyY1cvhnttlmSzfffHOL9+3fE0GUaHXafffds4Bnr169sn+OScoRuKN+jYZ511vOcdHox1BetZicXxRxjZT3FQ9LiMbYYcOGpWuuuSYddthhWStmOSIwv8oqq1S8Basox0a5x0ee0OCMM86Y6mGqqabKXkXR1u9Np5122lzhnGrfm7altq+iyBtKzBu0q5dVV101a6MbO3Zsuu2229Juu+1W9cbGF198MQvR3XLLLaktyPt3JXmb6gAAAOD3CNABAAAAALRDeScX1XOSdJ51V3uSeL1dfPHFabXVVqtKmwiNKRq1TjzxxGyfGjBgQJp00vL+U09MDB40aFBFtiUCc8sss0zWPkdlGoKKoDWh3KWXXjoNGTKkahOG33333ayNrn///qlHjx5ZGHXUqFGpkc0wwwx1WW/e0EqEkhrtGPrll1/aRMML5Zl66qmz5ssFFlggbb755llg/bnnnksjRoxIe+yxR+7gTIxJq6++evrqq68qtm1FOTbKPT7y3C/F91YvRQrQuTelrR9H7eW7jd9nvfXWS+eff352/ogA9E033ZT+9re/pXXXXbfiTXpxnbXJJptkwe96y/sdFWnsBAAAoPYE6AAAAAAACjxJsdITrCo9QbstNrJVSoSUdtppp/Tjjz/We1MooOmmmy6dccYZ6ZFHHkndu3cv689eeOGFFQkirbTSStnETiqjyONhORZeeOGsEWO//fZLHTp0qNp6ouHj5JNPzsJ622yzTcMGnfM2t9RrveUcF46hfMoNXtM6Mcace+656ZVXXkmLLrporj/z6quvph122KFi29Cox0aexqm2fq/UXuTZxyJEWs/xp9HvTYsqwlSTTDJJYQJ0vzXzzDOnjTbaKP3jH/9It99+e5pllll+t8W5NX7++ee03XbbZQ+xqKc831FcP7qOAQAAoDWq91+dAAAAAACoe/tCPScX5WnaqHbLSr08+OCDabfddmv1+8QEsW7dumWvLl26ZM0JU045ZfbZRrCk1GTBaAh7/PHHW70dtF39+vVLjz32WNbc9cknn+T6MyNHjswm8kdQqSW+/fbbtNZaa6X3338/tUaMT9FCFfv39NNPn7XAxD4e+3bs43nGkMsuuyw10kT/RhH7wmmnnZb23HPPrHHxyiuvrNrE55g0HO9//fXXp8MOOyx7VTO419bUKzySNzhSTpjBMURb1rdv3+x8vf7662fXiaXceOON6eyzz0777LNPq9ft2Ji4PMGbIq670vLc09U79NLI96ZFFsdR3B/H/UkRA3R5vPfee2n06NHpySefTPfff3+69dZb08cff1zWe4wfPz5tueWWWYA7/t6hHkp9h/VuDQUAAKAYGue//gAAAAAAFEjeiecxEape8kzWrVfzTTV98cUX2RPcI5RRjp49e6ZVV101LbnkkmmRRRZJvXv3LrtZ7LcuvfRSAboGEPtKTJSMRri8jYf33XdfiwN0Bx54YBo+fHjZ7RDLL798Wm655bIGnnnnnTfNMcccqWPHjqk1ihSga+1nUURzzTVXGjhwYBaiu/rqq9O1116bnnjiiapMcI9z1pFHHpnuvffedNNNN2WNH42gXmGBvOfIPIGHCRxDtHVxLpxwvn7uuedKLn/ooYdmgfVosWuNRj028twv1TNcWKS2szyfdVyjNjU11S042Kj3po0gQlWNHKCb8HcJ8dpss83SBRdckB5++OF0+umnp7vuuqusIF5cC0fLeT3k+Y7iPAoAAACtIUAHAAAAANAO5Z3cV8+JmXnWXcRJiscdd1zuZq5o/tl+++3TLrvskpZYYomqbxvFteyyy6add945nX/++bmWf/rpp1u0nqFDh2aTMvOKZrwBAwakDTbYoJDHeyVFe0YeMQG9kRrSQjQU7rXXXtkrmhYjADp48OAsIPz6669nE/IrJQJ6q6yySva/0047bSq6egXt84ZWyhk38hxDs802WzZBHOoZ9Lj55puzMHmp5tgIhOy4447p0UcfbVXoKO/55aKLLsquJYoiz/iRp/GoWuq57krLO1bH2F+v68FGvTdtBNFmXapx7fPPP0+NIh4+EA/miVe0ju+666657/3iPu+ggw5Ks8wyS6q1PN9RozzgAgAAgOqZtIrvDQAAAABAFSff5lFqYm41lZrEVs7v0V7E73zuuefmWnaZZZZJr776arrwwgurFp4r+pP2+d+OOOKI3O2Uw4YNa9E6jj766FyNVRE8isawJ598Mm2++eZVmZBctP07b6NCkRprWmLGGWdMW265ZRb0iCbEjz76KGuM23fffbMGz0qEC+N9N9lkk/TTTz+lovvmm2/a9HrLGTvyHEONfvzQNvTo0SMNGjQo17KPPfZYuvLKK1u1vkY9v+QJQee5X6lWeK5IAbq2fm8awb0vv/yy4e5NG0WvXr1KLtOo4floHI8HThxyyCG5zwOXX355qoc8DyHK810DAABAcwToAAAAAADaoe7du+daLoIF9RBtQHkmpOb9PdqLK664IleoZ+21187ak+aee+6qbk+RJuZSWjQF9OvXL9ey7777btnvH+PJrbfeWnK5rl27Zm05f/7zn1M1FW3/ztuokGcCeKMF6jbaaKN0+umnp2eeeSaNGzcuPfDAA+nwww/PwsktbW2K9zjjjDNS0dXrOiHveqN9sJLH0FdffZX7/aCaopl1iy22yLVsBB++/vrrFq+rUc8veRqUxo4dW5NtaSvrbdR707zrLdq9aaOYY445Si6TtyG+qI10J5xwQtYsl8f111+f6iFPyDHPdw0AAADNEaADAAAAACjohNDw9ttvp3oYPXp0ruaevL9He3HNNdfkemp6LJe3Kaw1xowZU/V10LasscYaucNn5QZJbrjhhlzHdbQWRNtBtRVt/5599tlzLdfIE4DzNi2tuuqq6dhjj03PPvts+uCDD9L555+flltuubLf66STTip84Koth0diwne3bt0qegyNHz++bo1T8FsR0u3SpUvJ5WIcO+WUU1q8nlhHnja2op1f8txnvPnmmzXZlray3ka9Nx01alSu5Yp2b9oo8oSqGrWB7tciRLfYYouVXO7FF1/MHkhRa3nOQQJ0AAAAtJYAHQAAAABAOxSNLBESKOU///lPTbanpevt0aNHKopo7XjhhRdyTVzr3LlzTbbJRMHGs8ACC1StwS1aE0tZffXV03rrrZdqoWj7d4Rr83jnnXeqvi1FEm0yu+22W3rsscfS0KFD05Zbbpm7le7TTz9N5513XiqyeoU43njjjZLLRHhu0knz/+dsxxDtcXw69NBDc4ftYkxqqTzHR9GOjd69e+cKbHzzzTep1l5//fVUJD179sy1nHtTqiHP+Bbh+R9//DE1srimOvnkk0su98svv6SXX3451frvUvI8tCLvtR4AAABMjAAdAAAAAEA71bdv31xPD6+HPEGycsM+bV00Hf3888/NLjPDDDOkTTbZpGbbFGERGstMM82Ue9lyJ5E+9dRTJZeJoFKtFG3/nn/++VOHDh1KLlfrCa1FsuCCC6arrroqPfDAA7lan8Idd9yRiqxeYYYRI0aUXGauueYq6z0XWmihXMs5hmhLBgwYkGabbbaSy0Ww4MQTT2zxevIcH0U7NvLcZzQ1NWXX8LX2zDPPpKJdf84444zt+t60Y8eOqU+fPjXZHipr7rnnznWsF+3hGy2x8sor57pfHDlyZKqlvN9Nnu8aAAAAmiNABwAAAADQTi288MK5JimW2zJVCU888UTJZSK8MMccc6SiyBMGiAlrMTmzFqJNo2jtFpQ23XTT5V42T4vlBDGOREtLqVaD1VZbLdXK888/n4qkU6dOuQIORZt0Xw+rrLJKuvvuu3MFFiM4mqcRo72KIOr3339f8/XmCaxE4LEcMak6GnpLcQzR1sb+ww47LNey5557bho7dmyL1vPHP/4xV4Dhww8/TEUx++yzp2mnnbbkckOGDElt8V6piPemjz/+eKqHPJ/3vPPOmyaffPKabA+VFdcLeb674cOHp0YX92srrLBCyeU+//zzVEt5vpupp546O04BAACgNQToAAAAAADaqUUXXbTkMj/99FN6+OGHUy2NHz8+1zoXWWSRNMkkk6SiePfddyvWjlMJDz30UMlGPIrnu+++y71sTELMa/To0VlzQ3N69eqVOnfunGohtuXBBx9MRbPUUkuVXObRRx+tSzC6aJZddtm055575jqPPvfcc6mooomy1u1Lcb4sFcht6TkzT0jonnvuKft9oZp23nnn1LNnz1zn+JNOOqlq55cQ4eIiWWaZZUouc+edd6ZaB0Xeeuut1Ij3ph988EHNQ0yxzjytxXm2n7YpwnN5ApyvvPJKTbanrZtllllKLlPre408DaiLLbZYFgAEAACA1nBnCQAAAADQTkWbWR633nprqqUItXz55Ze5GoBaY7LJJiu5zC+//JJqJU9DUbdu3VKt1Pp7p23I2xwTTXVTTDFFu92/o8Hk448/TkWz1lprlVwm2sLuuuuummxP0e266665lvvoo49SkdU6MJM3rBIhx2ocQxHgK3IokvYZ/jjkkENyLXvBBRekMWPGlL2OJZZYIs0444wll7vppptSkeS534hWyjwPwqiU66+/PhVRW703jfWVeghEJe5Nqa8Y40oRoPsf00wzTcllyrlPrIQ8302e7xgAAABKEaADAAAAAGinFlhggTTrrLOWXO66664rq5WqtS6++OJcy6222mqtnmycpw2vVvJ8xrV6Yvo333yTfe80nmHDhuVarnfv3u12/y5nnGlv+vfvn6aaaqqSyw0cOLAm21N0ffv2Td27dy+5XBHDmr92yy231HR9N998c8llpp9++qyptlwbbrhhruUcQ7Q1O+20U5ptttmq1kIXD55Yb731cjU0RutsUayxxholl4lwVa3GhGiHHjRoUCqiFVdcMXXs2LHkcpdffnmqpVrdm1JfSy65ZMllBOj+x9ixYysSsqukPN9Nnu8YAAAAShGgAwAAAABox9Zdd92Sy3zxxRfpqquuqsn2vPfee7km4kcDxtJLL92qdeUJmeRpwquUPBNGaxXCiHaSPI1hFE80QOYx//zzt9v9+4MPPkhXX311KqIpp5wyrb/++iWXe+CBB9ILL7xQk20qujxB9HHjxqUie+2119ITTzxRk3W9/fbbucapaAJqSSh39tlnz3V9ceWVV6b333+/7PeHaom2n7wtdBdeeGGLWug233zzXAGvU089NRXFwgsvnOabb75c1861GOvj+iXul4ooAjd5Wuhef/317DqmFp5++ulcjaMR2O7Ro0dNtonqyBOuGjFiRPrhhx9Soxs5cmSu66laib+zeeedd0ouJ0AHAABAJQjQAQAAAAC0Y1tvvXWu5Y477riatLEdc8wx6aeffiq53J///OfUoUOHVq0rQniVeLp6pXTu3LnkMu+++27VtyMm/5588slVXw9tT0ymv++++3Itu/zyy1d8/45gW57jvxLjTJEnv+6555652nIOOOCAmmwP+QLb7d1ZZ51Vk/Wcc8456Zdffim53KabblrVYyhavP72t7+1eB1QDTvvvHOaZZZZcu2/J554Ytnvv/rqq6d55pknV5jsjTfeSEUR9x2lfPrppy1q9ivH999/n/7+97+nIst7b3rkkUemWjjiiCNyLbfttttWfVuorgUWWKDk3w/EfcpLL72UGtlnn32W66EJc889d6qVeChI3Ns0Jxpaa7lNAAAAFJcAHQAAAABAO9avX78011xz5Wp8OfPMM6u6LTEZ7ZJLLsm17Hbbbdfq9XXr1q3kMqNGjUq10rNnz5LL5A03tcbBBx+cPvroo6qvp1HVqqWpJWIyfd4AW56GkHL372+//TY99thjqdqf/8CBA1PRx/VFF1205HKDBw9O5513Xk22qchGjx5dcpkZZpghFd3111+fhg4dWtV1fPjhh+n888/P1WK03nrrtXg9m222WZp55plLLnfppZemu+66q8XrgUrr1KlTdh2Xt4UujqlyTDLJJGmvvfYquVw8dCOu1aONrijBxMknn7zkctG89+KLL1ZtOw4//PDsnqzINt5442wMz3M9d91111V1W+644450//33l1wuHuqy5ZZbVnVbqL5orV1jjTVKLvfwww+nWqnlw3zyimufUveLcd3bp0+fmm1T3NOUstZaa9VkWwAAACg+AToAAAAAgHYsJsLuu+++uZ/0//rrr1dlO2Ki7Q477JArvLPiiiumxRdfvNXrzBMcHD58eM2aqvI0esSk2aeeeqpq23DDDTdkE6qpnl133TUtvfTS6ZFHHkltyTPPPJM7TBXHX7lP8O/SpUuu0Oo111yTqiXaYbbaaquSDQVFEC17eey///7p8ccfr/r2FFUEvz/++OOSy80333yp6OK4iua2ah5fAwYMyJqzSonjfMopp2zxeiIok7ddLkJCI0aMaPG6oBrXGd27d8/VZtaSFrpddtklVyj+ySefzH2P0dbNOuusuQJSP/74Y9p8883T559/XvFtuPXWW6v+MJO2YOqpp05/+ctfci0bYc5qPfQjvsPddtst17JxzslzzNH2rb322hUJa1VKPDSgf//+6bXXXkttQQT6jj766FwPWom/Z6qVPKHGPN8tAAAA5CFABwAAAABQgFaFvBNtN9xwwzRu3LiKb0NMUIwgQh55J7WX0qtXr6ypozkRnnv00UdTLfzxj3/MtdxBBx1UlfVHMC9CjFTf008/nVZaaaW02mqrpQcffLDem5PeeeedtMkmm2QTv/PYfvvtW7SepZZaquQy//rXv9J//vOfVGnRbhetJkVvbplg3XXXTauuumqucT2aup599tlU733w0EMPLfvPvfzyy+mf//xn9nvUQ6y7lAhyLbTQQqkRDBkyJJ1++ulVee9rr702V9tQNMjst99+FbkuyRN8/OSTT9Lqq6+eRo4cmerp1VdfTccff3xdt4G2IcacvNeK0chabgtdvH/efe2cc85JRxxxRKqneEhHPCCgtee5ww47LHXs2LHkcm+88UZ2Xv3yyy9TpcRDFyKk9csvv6RGcMABB5S8RwsRYC/n+jWvaE6MIOT777+f65wT+wbFEA108Z02Jx48kbexuxIeeOCBtPDCC2fXJXlaj6vlq6++Suuvv36usW2LLbZItRIPVoh76+bE2B333QAAAFAJAnQAAAAAAO1cTFA86qijci0bwZZ11lmnopNCDz744HTJJZfkWjYmPlVq8lNMjsvTZBdPfq+FGWaYIS266KK5AgqnnHJKRdcd77nmmmumr7/+uqLvS/MiPBf785JLLpmuvvrqmrUd/trQoUOzMF/eCZkRtt1pp51atK48x25MSN12223TN998kyrliy++yAJltQrDthUR7srTwhUtK9EUcdNNN6Vai0aNaJrp06dP7vPAb7d97733zhpFY1ysRuvPxNx+++1Z4LOU+Gxb04bW3sQ5/b777qvoe7744otpxx13zLXsn/70p2x/aq0OHTpkoZs8DSoRAF122WWzc2mtRSgogh4xuf62226r+fppmyJokaf1NcLHJ5xwQtnvH2GuVVZZJdeyxx57bHb85mmPrHTY4+yzz84ac6MdM1poW9sUvc8+++RaNgI2cW01atSo1FpXXXVVdo1eyeuiti6uNaNxNI8YdyOsU6kQXYTn4jr0/vvvz7V87NuVOOfQNsT9eKmH2sT9cq0fPBH3R9ESH+PZHnvsUZWHjTQn7hMjXBiN5aX06NEjCxHXSrSdlrqH7tevX+rcuXPNtgkAAIBiE6ADAAAAACiAXXbZJVc71IRJoSuuuGKr21ZiIm00WZ188sm5lp9iiimyyeyVtMIKK5Rc5uabb05nnXVWqoWYBJ9HNItU4rNoamrK2kGiqaoazYLk89xzz2WT0WPCYXy30SRUbdHIFsHZOO7LaWWLBsiWhoGiJaRUq0OIyZnRdlmJoG4Eb5Zeeuk0ePDg1GiiPeu0007LtWxMzI/gUUwEj0aXarcBRVgvAgELLLBA1oAU/641okEpjp04huJ89sQTT6Rqija0vO0aeYNfRRHhgzh+84YPSnnhhRdS//79szErz3XCiSeemColwo8HHnhgrmU/+uijLDATAcJqh9HjeL388suz0F5M9I9mvkZppiKfOE/n3Xcvuuii9MEHH5T1/hEsveyyy9L000+fa/kISC+22GLpscceS9UWzaT77rtvdj7461//WtHGpr///e9p9tlnz3398Yc//CG7h2hJuCuuzeK+YOutt/7dltWZZ545C/sUVTQXzjHHHLmWjWuKtdZaKxuHW+Ozzz7Lgj/xUIs8ZppppnTSSSe1ap20PfHQjVIeeuihVA9xvRwP95l//vmz6+gbb7yxqi3Msb64To8m5Qiq5RGN0pNPPnmqlTz3eHm+UwAAAMhLgA4AAAAAoAAi1DJo0KDcwZiXXnopmwh7xhlntGhSaEysj/a3mHyb1z/+8Y+s/aGSYpJ/HtGCEE9djwmaeSbxt1QELaIRMI9o09h0001bPFk0JjEvv/zyWZvGxL7D+I6pnU8++SRr0VpwwQWzYNHRRx+dhesqGYyIdUT4MsJV8f7lNMLE/rL77ru3eN2zzjpr7mPugQceSIssskiLg29jx45N++23XxYumVhLQyPs3/F95Q3mTgg59O7dO5u4/t5771VsO2I/u+OOO7K2uVlmmSUL6917771ZiLeSYnyOc9lyyy2XnS8i8Pn0009XbD1vvvlm1kwT4bk854Jopdlggw1So4nve+21184CnK357CMkFuNO3uaoOOajjbCSoj0rtiGPGKvjoQBxDMVY3trGq1+LQPH111+fhWkiOLPddtvlnsxOY4rxPwI+1Wqhi4BaXMdPNtlkuZZ//fXXs2MpxsRHHnkkVTo0d9xxx2XXDRFaO/PMMyvalj1Bly5dska4vL9zbEPcQ8w555zpyCOPzO6fmhsTI3wb58o4x8w777xZOHZi4gEY00wzTSqqqaaaKgt35nnwwoRW5/j+Y59syXkngvHx5+++++6ymn7zhkhpP7bccsuS7bPRQlxPsY/HdXQ8nGTCNcE111yT3edVwhtvvJGdF2Lsimv3vA/aib/fieVrqVT7bozXf/7zn2u2PQAAABTfJE2V/i9bAAAAAABkLr300rTDDjuUXC4mZEaTVCVcccUVWTig3FBMNP5EMCYmHk5swlk0BN11113ZZMgINJQj3jvCa6Ums7VEPME9JvXmFRM5YzJZTNKPiatTTz11rom08X3mDQBEMDGvCNzFRNv43qJNLCacTsyIESPSfffdl33P0fLVnFVWWSWbqF+qPSkm7OX93UqJpol33nmn2WVGjRqVu5GiLYpwXLkNczE5N5qQIgy26KKLZsdZt27dcv3ZmPA4dOjQbHJ5TPaMCcY//fRT2ds944wzZvtM7PutEY0sSyyxRFmhwNivIwiw2mqrpdlmm22iy33++efp0UcfzSacR3Nkc+HACAtHs1Uc/6VU6j+FxTgdocVajecT/PDDD1lLxcMPP1zWn4txLfa7aGOJ0EPsux07dszVQPbWW2+l4cOHZ/tMtMHFmF8qrBkTgMeMGVPWNsbvFNtYSoRI+vXrlwXrYnJvBFTzBEtiP43fJQKdcfzE+FnO8RPnvGjFaa+iUa1U0CXOERdffPFEfx6f9/HHH5+1yOU9h0cwLEKcMV7lFeNi7G/VaD2JsSX2n9inyxGNeBG+j+aTaIuL4HKe64VofInJ67G+OHbiGIowdakHFsRY+dRTT6XWiGbgUg83iKBtLNfI8lyvhHpPpYh2rEMOOSTXvhrN0s2dYycm2olaEpiIkHOE6VZfffVsnMgbRIoHR7z22mtZGC2OjXggRJ4GvQhGxbmwEiIoG22TLTHttNNm4bi4f4r7iDiuI2gX55r4DvKcY+IBGnGtU8vr5jz3pZW8J/j1A1Si+a8cc889d7ZPxvVLfNbNfTZxbr/wwgvLHt+j3TCCmrU+58aDJWK5Wslz3q73OFcN0VI/ZMiQZj+XOPZ69uxZ1e3Ic+/w2+3q27dvdr8YYeII9Mc2xngTf2cR9z8x9v523Ihx9JVXXslesY9N7OEjzencuXN2zZLn3qpS4sEWpR6wFNdh99xzT822CQAAgOLrUO8NAAAAAACgcrbZZpts4tSpp56a+8/EpNWY2BWvrl27ZhPEo2EoJmnFJPDPPvssm4Q1evToFm1TTP6KydzVCM+FAw88MO200065l49ARUxwjVc58k4ojQDNv//979xBkmgOifeOV4cOHbJJcxFEmW666bKwS7QkxXcUk/Hju8gjgiXxmUdohPqL7+3GG2/MXhPE8RUTImOye0zAjgmR8f1/9dVX/31FC9u7777b6vVHKDMaUVobngsxoTMmNZ9//vm5/0xMxpwQuo3fOcKrMdbERM0Ih0W4JY7HmAyaN5gXk55jrGoEEYy49dZbsyBXhA3yiiBcjAETxoEIJs0+++zZdxDjS+xzMS7HdxDhuGi9iKB0vGLsb0s+/vjjLFQZrwnid4jjJ85XsS9NaGD95ptvshagGINj3IzfryX22muvdh2eK+e6IcaaO++883d//vzzz2eTl6ONb/31188mpcd5KkLAMbbEOSz2nQiyP/7441mYIYIx5Yj3ufrqq6sSnpuwr0TTS4R4y5lUHvtONKNMaEeJfaxXr15Zc1eEaCbsc/EZxDEUwaAJx1Acf9Ba0Vacpw0x9tVoG4pGrXLtuuuuWVj/oIMOKuvPxfga9xsT7jliLI5zTFzDxrERx3OEy+L4iPefcGzkbUKqpvhd45ojGn3LFdtf6iEWzYn23Aix5pW3wa2tiibZYcOGNdvG93uhmri/i1c8ACICPXFvM+GcE8dDhDDLDe1PEKHPOK4orngwTXMBuggNxsN9IkjZlsR2xYNa4nXllVfm/nPxkIDWiL9ziAa8Wobnwg033FBymXIfDgUAAAClCNABAAAAABRMTAiM0FVLJoV+8cUXrW4/+bVoCbr//vtTly5dUrVEi0qEeaLdpS2ISfUx4S0mZ5bT0hWitSICkK0RYaxoTYoJ/rRdEfKJwEk57YktDY7ccsstWbNRJceYaNgot+0jRBC3pWHcCaKNJyb8N5IYQyMIt/nmm2cBpZaIUFxMSo9XEUTwMl4xMb/SIjh32mmnpUYRzbLRkPnee+8124D667BMpUSjW0zajlBeNcU5MQJ+66yzTtktuhNESK4W4zb8+ppu//33T4cddljJZQcNGpQOPfTQFrXQRVApAkrRSN2SltswISDXXpxzzjlZwC/Gv1qJBwhEIDceolBOiL49i6B+3BdF8G1CGLkcEdBuLghVrmi9jeviPI28tF/R8rj33ntn+11z4a22FqCrh06dOmUB17XXXrvm6/71w2V+TzwgY6ONNqrZ9gAAANAY2vfjqgAAAAAA+F3RQJFnsm01Lb/88mnw4MFZc0A1RTNDNL5Vez3lWHXVVbOJubUWE3KjoWmJJZao+bppeyKQEo1l0RhV6f0sJkFH20yt7bbbblnLTiOKRp84vg8//PB230jTlm2wwQZZK0m12tDaojiWo6Uywjq1DlbE9cp6661Xk/XNMMMM6aGHHko777xzTdYHlRBtmNNPP33J5aKF7vjjj2/VAynuu+++FgXw2qM4jw4cODAdddRRVWvJ/m3zXFyT/frzzdP2GuGW9i7Catdff322j9XTn/70p+xcN6E9lOKKB9rE9Vxz4nhsaYthXksuuWTW/NxWRag3PodaXYf9WrSAlnoA0iabbOJ4BQAAoOL81zUAAAAAgAKKiaDHHXdc1uoST+6utd133z09+OCDWZtFLcw999zZ+trSBLU99tgjCwbUKugSv/tjjz2WVltttZqsr1FFMLStT2aORqdorHnhhRfSfPPNV5V19O7dOwui9OrVK9VCHEcnn3xy1jbZyOK7PfbYY7Nwckx6bWuTldv7Z/v3v/89Cym29WO8GhZZZJGs3bCajbG//bwvueSSLBRbS1NNNVXWOBWtJ926dUttSXs/hqiOuI7fd999cy37r3/9q9kmyTztXNGEvNlmm6W2JMaLclrbynHkkUdmwcFqPhRgp512ypp7Z5555v/175trx5qgKOejCKXHmH/GGWfUPKAe+8/RRx+dhfjiHEBjKHV9EU3x0bxWTdF6O2rUqHTrrbdmgb628nCG2I6DDjooG+8XXXTRumzDtddeW3KZWl8jAgAA0BgE6AAAAAAACmzzzTdPw4cPr9lTxSNU88ADD6TzzjsvaxuopYUXXji99NJLadddd80mSrYFe+65Z9Z0UO1J+tGo8Oyzz6Y//OEPVV0PKQtwffTRR+mqq67KPvd6BFSbC85uvPHG6dVXX02nnnpqmmKKKaq6vgjnPf3006l///5VXc+cc86Z7rnnnnTggQdWdT3tSbQKxth+0kkn1Szw9HtinN9www2zxrahQ4eW/ed79OiR/S4dOnRI9RStnU899VQ2wb4WTURt1UorrZSGDBlS9QaqOCfefffdabvttkv1EmPlG2+8kQ4++OCqj5XNiTDHVlttlQV44jOB37PPPvuk6aabruotdCHa7iLYEEHtegUrJlhooYXSKaeckkaPHp09wKBa4uETr732WjYeVLLtKLb//vvvT4MGDfo/DZ8R3vnqq6+a/fMRGqzn+FQNAwYMSC+++GJadtlla7K+2IefeeaZLCDfyOf3Rr2miebH5kSgvtri7yXWX3/9dMstt2SNd7HOtddeuy7h2BjfI5A9cuTI7B6iWsHkUpqamrJxsTnLLbdc+uMf/1izbQIAAKBxCNABAAAAABRcBBRuu+22rKEtmiWqIVqozj333Cy4s+qqq6Z6iUlhF154YTYp7JBDDsma6eptrbXWyj6XXXbZpeLBvggN3nXXXemGG274P60WVE+E5rbccsvsc//000+zydHR+BaTdGvVOPhrM844YzYZ8j//+U/WqjTvvPPWbN2x3917773ZJMhKt7d07do1HXHEEdnxU+2QXnsUk+qjPeKdd97JApMRNKyFmPC7yiqrpHPOOSd9+OGHWWPbRhtt1KJWjRijo5Xn448/zhpTt9lmm2x/rpVlllkmO2YigBwhOv7nvBKNJPFdVEM0sLz88stt4piO8OmJJ56YtcNEuKJW59E4h0QrzcUXX5zGjh2brrzyyuzzqMf5g/Yh9tUIHuVtoYvAWSXCJ88//3y688470xprrFGz8NH888+f9ttvv6xFN8aiAw44oKrtcL9ugIzx4K233sqaXlt6To1zc4Rj4nOL7Z9YM3Sc93766adm36uo1/Z9+/bNWrPj/Fsq4NRSCyywQPawizi/V2sdtH2l2juHDRuWnnjiiZptTwShd95552x8+OSTT7Lm37iHjGvQajx8KMbteODJ7rvvnv19UAT4Tj/99Ozvh+opAtrxEIPmxHkAAAAAqmGSpni0CwAAAAAAFRdtaPGk8TwTVONVKzFxPSZrR7tEaybYRmtKNNtFc0qExOrdIDQxMRE2JsbF7x0TteJ3jglrn3/+edbU8eOPP2ZPQS+lEn+d/uabb2btfDGhM1rMWhoqWnPNNdNf/vKXkvtNNC5cffXVzS4TT3aPMFglzDHHHFmYpzkRVIjliir2q2hwima2eMXk8y+++KKi64hjLUIuK664YtZoEK0sbaF18dtvv01XXHFF1qwQv3dLxO8R+2SEd7bddtuSzQh5AgVnnnlmqoSjjjoqayhrzpFHHpktVw/RZhP7XgTaYpJsHGuV2t8iHBrh6Hj169evqq0Z8XtEaPLJJ5/872vEiBEVGYPDggsumB030dAax1GRxTkiAoqlJjFP7FwSPzvuuOOyAH4lwooRSonwZVsV1wMRiI5rt5jUHhPNKyECNTGuxfETYZqlllqqatdM22+/fbrsssuaXeaSSy7Jlmtkea5XQluaSjFu3Lhsu/NcU+y2225ZY24lvf3221nbaBwfcV39888/V+R9e/bsmY0LE46PWoTl8opzUTRrR5gvHlLw7rvvZq1x3333XXYejDBsXJfHgwsisLXkkktmYdg8rU5xjbj00ks3u0y0tD3++OMV+V0uvfTStMMOOzS7TLSCxnK1Fr9j3BvFgykiWNiacFIE+uPeNB4aU+vGudaec6shz2fQlsa5apzXIwz7/vvvt7n9/rfGjx+fBfoieBt/ZxAPBHrvvfeyYyIe2BL3WfF3F7839sbfC8S1Rvz9zEwzzZSNo717987Cqr9tv2wLtthii+zvoiZmrrnmyv7exoMFAAAAqAYBOgAAAACABhYTk6IB4MUXX8wmaUXY7LPPPkvffPNNNjk0GoViIlY0X8w+++zZZKaYIBoBisUXX7wqT0pvBBEQiYmzjz76aDYpd8IEuS+//DKbGBefe0x2i4m5s802WzYxN17LLbdcNvG+LYSlyC8mbcaEyAgBxQT0mLQfzV0R5IzjbcKEyPhPNnFMxQTImJg9wwwzZJMgu3Xrlh17ffr0yVoEIswUx2VbFkHV++67Lz333HNp+PDh2aTzmPwZ40qIyeWxj0fb2DzzzJPt3xNCWjEZndb74IMPshBtjDExtsd+F/tiTP6Pfe7777/PJqZOGOcn7G/RShH7W7TDLbTQQlngrJqBubzB1NiPYkLxhFf8PhEk+frrr//7irE1fp8pp5wy27eivScCJ3HsRFguwgi1bLirt0pN5o8HAlx33XVZqCzGsrxi8nYE7CO00R4bgCKEGu1FcY0U/xz7XBxXcY004RiKINyEc/aEYygCQXEMxdgW+11MYG+rDxmAloj9P84tcXy8/vrr2Tn+1+f5+PmE8TjOH3Fej7G3e/fuWZgljo84LuK8H8dMI4rm3minbk48TODyyy9PjSKugyO0GPemcd6Ja5e4bo5rgAlj7oSQUOxTcX6PfSnG2bg3jf8VuOG3TjrppKyZfmLimjHO7e3l/uP3AuDtadpf3P/G329EYHBizjrrrLTPPvvUdLsAAABoHAJ0AAAAAAAAAAVTjTacmPgcIboINEZDWwQyI7wYAbEIfUfgN4K+Eb7s1atXBX4LgOKJxqiBAwc2u8wJJ5zQbPAHKC0ethAPAorrlYk5++yz0957753ag/YeoDv11FPTgQce2GyTZASy22JzHgAAAMXgUXcAAAAAAAAAlBQtUhG4Kyd0B8D/9uCDD5ZcJlq/gdaJZrl99903HXPMMc02nu2xxx5a3qvsxx9/TOecc06zyxx00EHCcwAAAFTVpPXeAAAAAAAAAAAAKLpXXnkljRw5suRySy21VE22B4pu//33T9NPP/1Efx7H4/XXX1/TbWpEV199ddYuNzHdu3dP++yzT023CQAAgMYjQAcAAAAAAAAAAFV2ySWXlFxm/vnnT926davJ9kDRdenSJR188MHNLnPSSSfVbHsaUVNTU8nP+PDDD09TTTVVzbYJAACAxiRABwAAAAAAAAAAVfTJJ5+kiy66qORyq666ak22BxrF3nvvnWaZZZaJ/vyll15Kd999d023qZHccsst6bXXXpvoz3v16pV23XXXmm4TAAAAjUmADgAAAAAAAAAAqujII49M33zzTcnlNttss5psDzSKKaecMv3tb39rdpkTTjihZtvTaE488cSSY+Pkk09es+0BAACgcQnQAQAAAAAAAABAlQwePDidf/75JZfr2bNn6tevX022CRrJLrvskvr06TPRnw8ZMiQ9+uijNd2mRnD//fenZ555ZqI/X2ihhdK2225b020CAACgcQnQAQAAAAAAAABAFbz55ptp0003TU1NTSWX3XXXXdMkk0xSk+2CRtKxY8d09tlnN7vMwQcfXLPtaQQx5pX6TP/5z3+mySabrGbbBAAAQGMToAMAAAAAAAAAoPDeeuutdNxxx6Wvv/66JusbOnRoWmGFFdKnn35actnOnTunPffcsybbBY1ojTXWSBtvvPFEf/7UU0+lG2+8sabbVGRXXXVVevHFFyf686222iobHwEAAKBWBOgAAAAAAAAAACi8b7/9Nv3tb39Lc8wxRzryyCPT2LFjq9a8dOGFF6all146ffjhh7n+zIABA9J0001Xle0B/scZZ5yRpppqqon+/LDDDks//fRTTbepiH744YdsrJ2YLl26pFNPPbWm2wQAAAACdAAAAAAAAAAANIxohDvmmGPS7LPPnjbZZJN0++23Z4GP1vrll1+y91piiSXSbrvtlgX28phrrrmy4A5QXXHMH3744RP9+YgRI9LAgQNruk1F9M9//jO98847E/35UUcdlbp3717TbQIAAIBJmuKxVwAAAAAAAAAUxkorrZQeeeSRZpcZPHhwthxAoxg2bFhaaKGFfvdnU089derfv39aYYUV0jLLLJMWXHDBNM0005R8z08++SQ999xz6Z577kk33XRTGj16dFnbNNlkk6X7778/rbzyymX9OaBlxo8fnx3fb7zxxu/+vFu3bmnkyJG5jv9aiubM34bS2uK0vy+++CL17t07ffbZZ7/78wUWWCC99NJLqUOHDjXfNgAAABqbO1EAAAAAAAAAABraN998k2655ZbsNcFss82WevTokQVqpppqqjT55JNn4Zvvvvsuffjhh1lYbsyYMa1a7wknnCA8BzUUx3E0zVEdXbt2zVo+AQAAoK0RoAMAAAAAAAAAgN94//33s1e17LXXXunAAw+s2vsDxTFgwICs3Q0AAABoGQE6AAAAAAAAAACooYMOOiiddNJJ9d4MoB0F6AAAAICWE6ADAAAAAAAAAIAa6Ny5cxo4cGDaYost6r0pAAAAANAwJq33BgAAAAAAAAAAQNFtvPHG6eWXXxaeAwAAAIAaE6ADAAAAAAAAAKDw5p9//nTfffelXXfdNXXr1q0m65x00knT+uuvn4YMGZJuvPHGNOecc9ZkvQAAAADA/9PhV/8MAAAAAAAAAACFNNlkk6X+/ftnr/POOy8LtT300EPpySefTM8880z68ssvKxaaW3rppbPgXLTN9erVqyLvCwAAAAC0jAAdAAAAAAAAAAANF6ZbaaWVslf45Zdf0vDhw9PQoUPT22+/nd55553sfz/44IP09ddfp2+//TZ7fffdd9nyU045ZerUqVOaYYYZUo8ePVLPnj2zhrvFF188LbbYYqlr1651/g0BAAAAgAkmaWpqavrv/wMAAAAAAAAAAAAAAACAgpi03hsAAAAAAAAAAAAAAAAAANUgQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUUod6bwAA0HLdu3dPX3zxxf/59x07dkyzzz57XbYJAAAAAAAAAAAAAIC25913300//vjj//n3Xbt2TWPGjKnLNtXCJE1NTU313ggAoGU6deqUfvjhh3pvBgAAAAAAAAAAAAAA7dQUU0yRvv/++1RUk9Z7AwAAAAAAAAAAAAAAAACgGgToAAAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACkmADgAAAAAAAAAAAAAAAIBC6lDvDQAAWq5jx47phx9++D//fooppki9e/euyzYBAAAAAAAAAAAAAND2jBw58nfnn8e89CIToAOAdmz22WdPw4cP/z//PsJzr776al22CQAAAAAAAAAAAACAtmeBBRb43fnnMS+9yCat9wYAAAAAAAAAAAAAAAAAQDUI0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhCdABAAAAAAAAAAAAAAAAUEgCdAAAAAAAAAAAAAAAAAAUkgAdAAAAAAAAAAAAAAAAAIUkQAcAAAAAAAAAAAAAAABAIQnQAQAAAAAAAAAAAAAAAFBIAnQAAAAAAAAAAAAAAAAAFJIAHQAAAAAAAAAAAAAAAACFJEAHAAAAAAAAAAAAAAAAQCEJ0AEAAAAAAAAAAAAAAABQSAJ0AAAAAAAAAAAAAAAAABSSAB0AAAAAAAAAAAAAAAAAhSRABwAAAAAAAAAAAAAAAEAhdaj3BgAAAAAAAAAA0HJzHHJnvTcBgAp4+8R16r0JAAAAUEga6AAAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAApJgA4AAAAAAAAAAAAAAACAQhKgAwAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKSYAOAAAAAAAAAAAAAAAAgEISoAMAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACkmADgAAAAAAAAAAAAAAAIBCEqADAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAApJgA4AAAAAAAAAAAAAAACAQhKgAwAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKSYAOAAAAAAAAAAAAAAAAgEISoAMAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACkmADgAAAAAAAAAAAAAAAIBCEqADAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAApJgA4AAAAAAAAAAAAAAACAQhKgAwAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKSYAOAAAAAAAAAAAAAAAAgEISoAMAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACkmADgAAAAAAAAAAAAAAAIBCEqADAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAApJgA4AAAAAAAAAAAAAAACAQhKgAwAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKCQBOgAAAAAAAAAAAAAAAAAKSYAOAAAAAAAAAAAAAAAAgEISoAMAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACgkAToAAAAAAAAAAAAAAAAACkmADgAAAAAAAAAAAAAAAIBCEqADAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAAoJAE6AAAAAAAAAAAAAAAAAApJgA4AAOD/Y+/eo6wu68WPfxiuDldN8cYdUWPMg4gGKKknAZUyC5aY6cFTpkaaWlmcOnlbVp5VGaHYsjpHsVJTE01NU0RzpSkkYMogV0lUhASU4a4wv7W3nV+nZPaey96zZz/zeq2116x4nnm+z2eoFn/Me30BAAAAAAAAAAAASJKADgAAAAAAAAAAAAAAAIAkCegAAAAAAAAAAAAAAAAASJKADgAAAAAAAAAAAAAAAIAkCegAAAAAAAAAAAAAAAAASJKADgAAAAAAAAAAAAAAAIAkCegAAAAAAAAAAAAAAAAASJKADgAAAAAAAAAAAAAAAIAkCegAAAAAAAAAAAAAAAAASJKADgAAAAAAAAAAAAAAAIAkCegAAAAAAAAAAAAAAAAASFK7Ul8AaD7bt2+PJUuWxKuvvho1NTWxZcuWqKysjK5du0avXr3ikEMOiQ4dOkQ5MVN5SHEmAAAAAAAAAAAAAACg5RPQQeKeeeaZuPfee+Ohhx6KhQsXxs6dO+vc27Zt26iqqopTTjklPvGJT8Tw4cOjJTKTmQAAAAAAAAAAAAAAAOqjTW1tbW29dgL/34YNG+KDH/xgrFmzJu/eSZMmxS233BLN7Y477ojvfe97MW/evEafceSRR8Zll10WEydOjJbATLtnptYtEx5WV1e/788HDx6cDRcBAAAAAABIX78pD5b6CgAUwMprx5X6CgAAACSuqpX+/nlFqS8A5egrX/lKveK5UnjppZfiuOOOi09/+tNNCpgynnvuuTjjjDPihBNOiMWLF0epmCk3MwEAAAAAAAAAAAAAAOyegA4aaPbs2XHzzTdHS3TPPffEUUcdFU8++WRBz33iiSdi2LBhMXPmzGhuZqo/MwEAAAAAAAAAAAAAAPwjAR00wNatW+O8886Llmj69OkxYcKE2LRpU1HOz5w7fvz4uPHGG6O5mKnhzAQAAAAAAAAAAAAAAPB3AjpogCuuuCKWL18eLc2MGTPioosuitra2qI+J3P+hRdeGLfeemsUm5kaz0wAAAAAAAAAAAAAAADvEdBBPc2fPz9++MMfRkszZ86c+PznP1+vgGnkyJFxww03xLx582L9+vXxzjvvZL/+6U9/imnTpsWHP/zhvGdknpN53ty5c6NYzGSmUs0EAAAAAAAAAAAAAACkpU1tsV8bBAnYuXNnHHXUUdmIrqEmTZoUt9xyS1HutXHjxhgyZEi8/PLLOfcNGjQofvzjH8dHP/rRvGc+8sgjMXny5Lxv2uvfv38sWLAgunXrFoVkJjOVaqZyVVVVFdXV1e/788GDB8fChQtLcicAAAAAAACaV78pD5b6CgAUwMprx5X6CgAAACSuqpX+/rk30EE9/OAHP6gznhswYECUyuWXX543YDrxxBOzb+yqT8CUMWbMmOxbwU444YSc+zLPvfLKK6PQzGSmUs0EAAAAAAAAAAAAAACkR0AHeWTehlVXrDNy5Mg466yzohQyxe/06dNz7hkxYkTcd9990b179wad3aNHj7j//vvj6KOPzrnv+uuvj0WLFkWhmMlMpZoJAAAAAAAAAAAAAABIk4AO8jj//PNj69at7/vz9u3bx0033RRt2rQpyb2uuuqqePfdd+tc32uvveJXv/pVVFZWNur8zp07x5133pkNmuqSef7VV18dhWKmhjMTAAAAAAAAAAAAAABA3QR0kMP//M//xGOPPbbbta985Stx2GGHRSmsWLEifv3rX+fcc80110Tv3r2b9Jy+fftmY6lc7rrrrli5cmU0lZkaz0wAAAAAAAAAAAAAAAC7J6CDOqxZsya++tWv7nZtwIABcfnll0epTJ8+PXbu3Fnn+qBBg+K8884ryLMmT56cnbcumXtk7tNUZmoaMwEAAAAAAAAAAAAAALyfgA7q8KUvfSk2bNiw27Ubb7wx9thjjyiFTDR0++2359xz6aWXRtu2bQvyvHbt2mV/FrncdtttsWvXrkY/w0xNZyYAAAAAAAAAAAAAAID3E9DBbtx///1x55137nZt4sSJMXbs2CiV2bNnx+rVq+tc79SpU5x11lkFfeakSZOiQ4cOda6//vrr8cQTTzT6fDMVhpkAAAAAAAAAAAAAAAD+kYAO/klNTU1Mnjx5t2s9evSIqVOnRqnjvlzGjRsXXbt2LegzM3OffPLJTbpXU77XTPVjJgAAAAAAAAAAAAAAgH8koIN/MmXKlHj11Vd3u/bd73439ttvvyilWbNm5Y2YiiHfuY8++mijzzZT4ZgJAAAAAAAAAAAAAADg7wR08H88/fTT8eMf/3i3ayNGjIjzzz8/Smn16tWxaNGinHtOPPHEojx79OjROdcXLlwYb7zxRoPPNVNhmQkAAAAAAAAAAAAAAODvBHTwNzt27Ihzzz03amtr37fWrl27uOmmm6JNmzZRSnPmzMm53rt37+ynGPr16xf7779/zj1z585t8LlmKiwzAQAAAAAAAAAAAAAA/J2ADv7m29/+dp1v2Pryl78cH/rQh6LU5s2bl3N96NChRX3+sGHDcq7Pnz+/wWeaqfDMBAAAAAAAAAAAAAAA8B4BHUREdXV1XHvttXW+/eqKK66IlmDBggU51w8//PCiPj/f+Y2JmMxUeGYCAAAAAAAAAAAAAAB4j4COVm/Xrl1x7rnnxo4dO3a7fuONN0ZlZWW0BEuWLMm5PmjQoKI+/6CDDsq5vnTp0gafaabCMxMAAAAAAAAAAAAAAMB7BHS0etOnT48//vGPu107/fTT4+STT46WoLa2NlauXNmkyKip8p2f737/zEzFYSYAAAAAAAAAAAAAAID3COho1VatWhXf/OY3d7vWvXv3mDp1arQUa9asiW3btuXcc8ABBxT1DvnO37x5c6xdu7be55mpOMwEAAAAAAAAAAAAAADwHgEdrdrkyZOjpqZmt2vf+c53Yv/994+W4vXXX8+7Z7/99ivqHepzfn3u2ZC9Zmo4MwEAAAAAAAAAAAAAALxHQEerdccdd8QDDzyw27Xhw4fHBRdcEC3JunXrcq5369YtOnbsWNQ7VFZWRpcuXZp0z4bsNVPjmAkAAAAAAAAAAAAAAOA97f72FVqV9evXx8UXX7zbtXbt2sVNN90UFRUVLe7O+SKm5pB5zqZNmxp9z4bsNVPjman0pk+fHjfeeGPRn7N8+fKiPwMAAAAAAAAAAAAAAMqVgI5W6ctf/nKsXbt2t2uXXnppHH744dHSbNiwIed6165dm+Ue+Z7TkIjJTMVjptL761//GtXV1aW+BgAAAAAAAAAAAAAAtGot6xVb0AxmzZoVM2bM2O1a375948orr4yWaNu2bTnXO3fu3Cz36NKlS5Pu2ZC9Zmo8MwEAAAAAAAAAAAAAAAjoaGW2bNkS559/fp3r06dPj8rKymiJduzYkXO9XbvmeaFkvufku2dD9pqp8cwEAAAAAAAAAAAAAAAgoKOVufzyy2PFihW7XZswYUKMGzcuWqoUIyYzFY+ZAAAAAAAAAAAAAAAABHS0Is8991xMnTp1t2vdunWLadOmRUu2a9eunOtt27Ztlnvke87OnTvrfZaZisdMAAAAAAAAAAAAAAAAEc3z2iAosXfffTfOPffcOgOb73znO7H//vtHS5bv7VuZGZtDvue0b9++3meZqXjMVHr77LNPDB48uOjPWb58eWzfvr3ozwEAAAAAAAAAAAAAgHIkoKNV+P73vx8LFizY7drRRx8dX/jCF6Kl69ChQ4uImN55550m3bMhe83UeGYqvS9+8YvZT7FVVVVFdXV10Z8DAAAAAAAAAAAAAADlqKLUF4BiW7ZsWVx11VV1vlnrpptuioqKlv8/hXxv19qxY0fZRUxmKh4zAQAAAAAAAAAAAAAACOhoBc4777zYtm3bbtcuvvjiGDJkSJSDLl265FzftGlTs9yjpqamSfdsyF4zNZ6ZAAAAAAAAAAAAAAAABHQk7r//+7/j8ccf3+1a375963wzXUu011575VzfuHFjs9wj33Py3bMhe83UeGYCAAAAAAAAAAAAAAAQ0JGwNWvWxGWXXVbn+g033BCdO3eOcvGBD3wg5/pbb73VLPd4++23m3TPhuw1U+OZCQAAAAAAAAAAAAAAQEBHwi688MLYsGHDbtfGjx8fH/vYx6Kc7L333jnXt2/fXvSQaf369bFjx46CRUxmKg4zAQAAAAAAAAAAAAAAvEdAR5J+85vfxN13373btW7dusW0adOi3PTp06deb90rpvqcX597NmSvmRrOTAAAAAAAAAAAAAAAAO8R0JGkL3/5y3WuXXPNNXHAAQdEuenSpUveN2z95S9/KeodVq5cmXO9Z8+e0blz53qfZ6biMBMAAAAAAAAAAAAAAMB72v3tKyTlzTffrPPtcx07doyf/exnBXvWvHnzcq4vXbo07/OOO+64GDRoUN5n9e/fP9atW5fzWWPGjIliWbZsWd77NZSZCs9MAAAAAAAAAAAAAAAA7xHQ0aps3Lgxzj///GZ95tNPP5395HLzzTfXK6CrqqqKP/3pT3WuL168OIop3/mZ+zWUmQrPTAAAAAAAAAAAAAAAAO+p+NtXoAwMHTo05/r8+fOL+vx8b9s74ogjGnymmQrPTAAAAAAAAAAAAAAAAO8R0EEZyRcxLViwIHbu3FmUZ7/77rvx/PPPN3uYZaaGMRMAAAAAAAAAAAAAAMDfCeigjAwbNiw6depU5/qmTZviueeeK8qz58yZE1u2bKlzPXOvI488ssHnmqmwzAQAAAAAAAAAAAAAAPB3AjooI5lQ6Jhjjsm559FHHy3Ks2fNmpVzfdSoUTkDq7qYqbDMBAAAAAAAAAAAAAAA8HcCOigzo0ePzrl+zz33FOW5d999d871MWPGNPpsMxWOmQAAAAAAAAAAAAAAAP5OQEeS3nrrraitrW2WzxVXXJHzLpMmTcp7xjnnnFPv2SZMmJBzfd68ebF48eIopBdffDFeeOGFOtfbtGmT9165mKkwzAQAAAAAAAAAAAAAAPCPBHRQZgYOHBjDhw/Puef6668v6DOnTZuWc33kyJHRr1+/Rp9vpsIwEwAAAAAAAAAAAAAAwD8S0EEZ+uxnP5tz/eabb47Vq1cX5Fmvvvpq/PznP8+5pyFv0KuLmZrGTAAAAAAAAAAAAAAAAO8noIMydPbZZ0fPnj3rXN+yZUtMmTKlIM/6+te/Htu2batzfd99983ep6nM1DRmAgAAAAAAAAAAAAAAeD8BHZShTp06xcUXX5xzz6233hozZ85s0nPuvPPOuO2223LuueSSS6Jjx47RVGZqPDMBAAAAAAAAAAAAAADsnoAOylQmHurdu3fOPZMmTYo5c+Y06vxnnnkmPve5z+Xc07dv37wxVUOYqeHMBAAAAAAAAAAAAAAAUDcBHZSpysrKuO6663LuqampiTFjxsQDDzzQoLPvu+++GDt2bGzatCnnvh/84Aexxx57RKGYyUylmgkAAAAAAAAAAAAAAEiTgA7K2IQJE+LMM8/Mueftt9+OU089NT7zmc/ESy+9lHNvdXV1nHHGGXHaaafFxo0bc+7NnDd+/PgoNDOZqVQzAQAAAAAAAAAAAAAA6WlTW1tbW+pLQDm78sor46qrrqpzfdKkSXHLLbcU7fmZN3UNGzYsFi9eXK/9RxxxRIwcOTL69+8fXbp0yb4p7OWXX46nnnoqnn/++Xqdceihh8bcuXOz318MZjJTqWYqR1VVVdkA8Z8NHjw4Fi5cWJI7AQAAAAAA0Lz6TXmw1FcAoABWXjuu1FcAAAAgcVWt9PfP25X6AkDTZEKi3/3udzFq1KhYtWpV3v3z58/PfhqrT58+2ecVM2Ayk5lKNRMAAAAAAAAAAAAAAJCWilJfAGi6vn37xuzZs2PgwIFFfc5BBx2UfU4mZCo2MzWemQAAAAAAAAAAAAAAAN4joINEZAKjuXPnxtixY4ty/kknnZQ9v9ih1P9lpoYzEwAAAAAAAAAAAAAAwN8J6CAhe+65Zzz88MNxyy23RM+ePQtyZuacGTNmxEMPPRQ9evSI5mam+jETAAAAAAAAAAAAAADA+wnoIEGTJk2KFStWxPTp0+ODH/xgo84YPHhw9vtffvnl+Ld/+7coNTPtnpkAAAAAAAAAAAAAAADq1qa2trY2xzqQxxNPPJH91GXIkCFx2mmnRSktWbIk+3awefPmxcKFC+O1116Lmpqa2LJlS1RWVkbXrl2jV69e2XBp6NChcfLJJ8egQYOiJTOTmXhPVVVVVFdXv+/PMz/TzM8cAAAAAACA9PWb8mCprwBAAay8dlyprwAAAEDiqlrp75+3K/UFoNwdf/zx2U9LdvDBB2c/KTFTeUhxJgAAAAAAAAAAAAAAoHxUlPoCAAAAAAAAAAAAAAAAAFAMAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJAjoAAAAAAAAAAAAAAAAAkiSgAwAAAAAAAAAAAAAAACBJ7Up9AYCm2L59eyxZsiReffXVqKmpiS1btkRlZWV07do1evXqFYccckh06NAhyomZAAAAAAAAAAAAAAAACkNAR6u2a9euWLFiRbzwwguxbNmyWLVqVbzyyivZr+vXr89GPps3b46tW7dGu3btolOnTrHnnnvGfvvtF3379o3BgwfHkUceGccee2z06NGj1OO0Gs8880zce++98dBDD8XChQtj586dde5t27ZtVFVVxSmnnBKf+MQnYvjw4dESmak8ZgIAAAAAAAAAAAAAAMpLm9ra2tpSXwKay/Lly+Opp57KfhYsWBAvvvhiNpJrqoqKihgxYkScfvrpcfbZZ2cju2Jr06ZNlNKjjz4aJ554YrM+84477ojvfe97MW/evEafkQkeL7vsspg4cWK0BGYqj5laskx4WF1d/b4/zwS+mXARAAAAAACA9PWb8mCprwBAAay8dlyprwAAAEDiqlrp759XlPoC0BwuuOCC7FvjDjrooJg0aVL85Cc/iTlz5hQknvvfN9lloryLL744evfunf365ptvFuRsIl566aU47rjj4tOf/nSToqyM5557Ls4444w44YQTYvHixVEqZiqPmQAAAAAAAAAAAAAAgPImoKNVmDVrVqxZs6ZZnrV58+aYNm1aNtb72c9+1izPTNk999wTRx11VDz55JMFPfeJJ56IYcOGxcyZM6O5mak8ZgIAAAAAAAAAAAAAAMqfgA6K5O23347Pf/7zMXHixNi2bVupr1OWpk+fHhMmTIhNmzYV5fzMuePHj48bb7wxmouZymMmAAAAAAAAAAAAAAAgDQI6KLI777wzRo8enX0zHfU3Y8aMuOiii6K2traoz8mcf+GFF8att94axWam8pgJAAAAAAAAAAAAAABIR7tSXwBairZt20afPn3ikEMOiYEDB0b37t2ja9eu0a1bt9i5c2ds3Lgx+1m6dGnMnz8/Vq5cWe+z//CHP2Tf0PXggw9GRYVuNZ85c+Zk395Xnyhr5MiRceaZZ2a/9uvXL/t3VlNTEytWrIinn346fvnLX8azzz6b84zMczLP++AHPxhHHXVUFIOZymMmAAAAAAAAAAAAAAAgLW1qi/3aIGgBDjrooFi+fPk//FmvXr3i2GOPjVGjRmW/HnroodGhQ4d6n/nGG2/EbbfdFjfffHO8+OKL9fqeb3/72/GNb3wjCqFNmzZ1rn384x+PU089NYrplFNOiQMOOKDg52YixSFDhsTLL7+cc9+gQYPixz/+cXz0ox/Ne+YjjzwSkydPft9/B/5Z//79Y8GCBdlospDMVB4zlauqqqqorq5+358PHjw4Fi5cWJI7AQAAAAAA0Lz6TXmw1FcAoABWXjuu1FcAAAAgcVWt9PfPBXS0moAu88a4Y445Jk477bRsXJZ5y1wh7Nq1K37yk59kw7gNGzbk3NuxY8dYvHhx9O3bt6gB3RVXXBFXXnlllKNLLrkkfvSjH+Xcc+KJJ8bdd9+dfUtgfb311lvxqU99Kh5//PGc+y699NK47rrropDMVB4zlavW+g8YAAAAAAAA/k5AB5AGAR0AAADFVtVKf/+8otQXgObwwx/+MNasWRO///3vs+FNoeK5jIqKirjgggvi2WefjQMPPDDn3u3bt8c111xTsGenJvN/wtOnT8+5Z8SIEXHfffc1KMrK6NGjR9x///1x9NFH59x3/fXXx6JFi6JQzFQeMwEAAAAAAAAAAAAAAGkS0NEqfPzjH48PfOADRX3GoEGDsoFely5dcu67/fbbo6ampqh3KVdXXXVVvPvuu3Wu77XXXvGrX/0qKisrG3V+586d484778xGWnXJPP/qq6+OQjFTecwEAAAAAAAAAAAAAACkSUAHBZR5s10mLspl8+bNMXv27Ga7U7lYsWJF/PrXv865J/P2vt69ezfpOX379s37d3TXXXfFypUro6nMVB4zAQAAAAAAAAAAAAAA6RLQQYFddNFFOd+clfHkk082233KxfTp02Pnzp053/B33nnnFeRZkydPjgEDBtS5nrlH5j5NZabymAkAAAAAAAAAAAAAAEiXgA4KrH379nHKKafk3LNo0aJmu085yIRQt99+e849l156abRt27Ygz2vXrl186Utfyrnntttui127djX6GWYqj5kAAAAAAAAAAAAAAIC0CeigCEaMGJFz/fXXX2+2u5SD2bNnx+rVq+tc79SpU5x11lkFfeakSZOiQ4cOOf+OnnjiiUafb6bymAkAAAAAAAAAAAAAAEibgA6KYN999825vnnz5ma7Szm4//77c66PGzcuunbtWtBn9ujRI04++eQm3asp32umljETAAAAAAAAAAAAAACQNgEdFEH37t1zrldWVjbbXcrBrFmz8oZZxZDv3EcffbTRZ5upPGYCAAAAAAAAAAAAAADSJqCDIli7dm3O9b333rvZ7tLSrV69OhYtWpRzz4knnliUZ48ePTrn+sKFC+ONN95o8LlmKo+ZAAAAAAAAAAAAAACA9AnooAhWrVqVc33AgAHNdpeWbs6cOTnXe/funf0UQ79+/WL//ffPuWfu3LkNPtdM5TETAAAAAAAAAAAAAACQPgEdFMHDDz+cc33UqFHNdpeWbt68eTnXhw4dWtTnDxs2LOf6/PnzG3ymmcpjJgAAAAAAAAAAAAAAIH0COiiwV155JZ566qk619u1axcnnnhis96pJVuwYEHO9cMPP7yoz893fmPCLDOVx0wAAAAAAAAAAAAAAED62pX6ApCaSy65JHbu3Fnn+vjx4+OAAw5otvu88847sXz58mzYt379+ti2bVu0b98+9thjj+jRo0f06tUrevfunf3PpbBkyZKc64MGDSrq8w866KCc60uXLm3wmWYqj5kAAAAAAAAAAAAAAID0CeiggKZOnRozZ87M+fa5KVOmFP0e1dXV8bWvfS0ef/zxeOGFF2L79u0591dUVMTBBx8cw4YNy74d7+STT46ePXsW/Z61tbWxcuXKJoVTTZXv/Hz3+2dmKo+ZAAAAAAAAAAAAAACA1kFABwV6y9s111wTV199dc59//Ef/xFDhgwp+n3uuuuuBu3ftWtXvPTSS9nPL37xi2xQd9JJJ8UFF1wQH/vYx6JNmzZFueeaNWuyb8TLpdhv68t3/ubNm2Pt2rX1DgrNVB4zAQAAAAAAAAAAAAAArUNFqS8A5R7O3XvvvdkoLl88lwnSvvWtb0U5yAR1v/3tb+PUU0/NvpVu1qxZRXnO66+/nnfPfvvtV5RnN+T8+tyzIXvNVPqZAAAAAAAAAAAAAACA1sEb6KAedu7cGRs3boyampp49dVXY8GCBfHcc8/FfffdF+vWrcv7/Zl4bubMmdG+ffsoN/PmzYvRo0fHv//7v8fUqVOjW7duBTs7388u86yOHTtGMVVWVkaXLl1i06ZNde6pz99xffeaqWXMBAAAAAAAAAAAAAAAtA4COoiIF198MT70oQ8V/Nx27dpl3zr3zW9+M9q2bRvl7Oabb45nnnkmHnjggRgwYEBBzly/fn3O9ULGevmekyvMynfPhuw1U8uYqTlMnz49brzxxqI/Z/ny5UV/BgAAAAAAAAAAAAAAlCsBHRRBmzZt4hOf+ERceeWV8S//8i+RikWLFsWHP/zheOKJJ6KqqqrJ523YsCHneteuXaM55HtOQ8IsM5XHTM3hr3/9a1RXV5f6GgAAAAAAAAAAAAAA0KoJ6KCADj300PjkJz8ZZ511VgwePLgkdzjssMPiyCOPzL5RL/Pp3bt3dO/ePfvp0KFDNjJat25drF27Np599tn4/e9/H0899VRs3LixXue/+eabMXr06Oz39O/fv0l33bZtW871zp07R3Po0qVLk+7ZkL1mahkzAQAAAAAAAAAAAAAArYOADgqkXbt2MWDAgDjwwAOjsrKy2Z7btm3bGDNmTHz84x+PcePGRZ8+fXLu33fffbOfTOB3/PHHx9e//vVseDRjxoz4/ve/H8uWLcv7zNWrV8f48ePj6aefjk6dOjX67jt27Mj7M20O+Z6T754N2WumljETAAAAAAAAAAAAAADQOlSU+gKQinfffTd++9vfxoUXXhgDBw6MT33qU/HMM88U7Xn7779/fOtb34qVK1dmn/uFL3whbzxXl0wEd/7558fixYtj6tSp0b59+7zfM3/+/PjGN74RTZFimGWm4hHQAQAAAAAAAAAAAAAADSWggyLYtWtXzJw5M0aMGBFnnnlmbNiwoeDPeOWVV+Lqq6+OXr16FezMioqKuPjii+MPf/hD9O3bN+/+66+/Pl544YUm/ZzyvV2vOeR7zs6dO+t9lpnKYyYAAAAAAAAAAAAAAKB1aJ7XBkELd+CBB8ZPf/rTOte3bt0ab731VvaTCdfmzJmT/Voft99+ezz55JNx1113ZYO6QinmW7+OPvro7J2PPfbYWLVqVc637l1++eXZWLAYM2TObw75nlOfN/L9LzOVx0zNYZ999onBgwcX/TnLly+P7du3F/05AAAAAAAAAAAAAABQjgR0EBF77rlnnHvuuQ36nrVr18Y999wTN910UyxYsCDn3tdeey3Gjh0bDz30UBxzzDFRDvr06RP33ntvjBw5Mmec85vf/CaWLl0agwYNavAzOnTo0CLCrHfeeadJ92zIXjO1jJmawxe/+MXsp9iqqqqiurq66M8BAAAAAAAAAAAAAIByVFHqC0C56tmzZ1xwwQUxf/78eOyxx2LgwIE599fU1MRJJ51UVqHL0KFD4xvf+EbOPbt27Ypf/OIXjTo/3xvDduzYEeUWZpmpeMotoAMAAAAAAAAAAAAAAEpPQAcF8K//+q/x5z//OT772c/m3Ldp06Y466yz8oZALcnXvva1bCyYy913392os7t06ZL359UcMnFjU+7ZkL1mahkzAQAAAAAAAAAAAAAArYOADgqksrIyfvazn+WN6DJvrPuv//qvKBedOnXKvmkvl8xb9dauXdvgs/faa6+c6xs3bozmkO85+e7ZkL1mahkzAQAAAAAAAAAAAAAArYOADgqoTZs28dOf/jSOP/74nPt+9KMfxdatW6NcnH766Xn3/PGPf2zwuR/4wAdyrr/11lvRHN5+++0m3bMhe83UMmYCAAAAAAAAAAAAAABaBwEdFFhFRUVcf/310bZt2zr3vPnmm3HrrbdGuaiqqoqePXvm3PPSSy81+Ny999475/r27duLHmetX78+duzYUbAwy0zlMRMAAAAAAAAAAAAAANA6COigCA477LCYOHFizj2/+c1vopwcccQROddXrlzZ4DP79OmTd8+aNWuimOpzfn3u2ZC9Zir9TAAAAAAAAAAAAAAAQOsgoIMiOe2003Ku/+EPf4hdu3ZFuejXr1/O9bVr1zb4zC5duuR9a9hf/vKXKKZ84V/mzXudO3eu93lmKo+ZAAAAAAAAAAAAAACA1kFAB0Vy0kknRUVF3f8T27hxYyxevDjKRffu3XOub9mypVHn9u/fP+f60qVLo5iWLVvWpPs15nvM1DJmAgAAAAAAAAAAAAAA0ieggyLp2rVr7L333gV/a1updOjQIef6O++806hzq6qqcq4XOzLMd36++zXme8zUMmYCAAAAAAAAAAAAAADSJ6CDItp3331zrq9bty7KxdatW3Ou77HHHo06d+jQoTnX58+fH8U0b968nOtHHHFEg880U3nMBAAAAAAAAAAAAAAApE9AB0XUrVu3JkVpLckbb7yRc71Lly6NOjdfmLVgwYLYuXNnFMO7774bzz//fLPHZmZqGTMBAAAAAAAAAAAAAADpE9BBEW3evDnneufOnaNcLFu2LOf6gQce2Khzhw0bFp06dapzfdOmTfHcc89FMcyZMye2bNlS53rmXkceeWSDzzVTecwEAAAAAAAAAAAAAACkT0AHRbRq1aqc63vuuWeUg+3bt2ffMJZL//79G3V2Jn465phjcu559NFHoxhmzZqVc33UqFE5o7G6mKk8ZgIAAAAAAAAAAAAAANInoIMiee2112LdunU59wwcODDKwWOPPZaN6HI5/PDDG33+6NGjc67fc889UQx33313zvUxY8Y0+mwzlcdMAAAAAAAAAAAAAABA2tqV+gKQqkceeSTneteuXePAAw+McnDrrbfmXG/fvn0cddRRjT5/woQJMWXKlDrX582bF4sXL45DDjkkCuXFF1+MF154oc71Nm3aZO/VWGYqj5kAAACAxus35cFSXwGAAlh57bhSXwEAAAAAAACKyhvooEhuueWWnOujRo3Kxj8t3dKlS/O+AewjH/lIdOrUqdHPyLyJb/jw4Tn3XH/99VFI06ZNy7k+cuTI6NevX6PPN1N5zAQAAAAAAAAAAAAAAKRNQAdFMHv27HjyySdz7hk7dmyUgy996Uuxc+fOnHtOP/30Jj/ns5/9bM71m2++OVavXh2F8Oqrr8bPf/7znHvOOeecJj/HTOUxEwAAAAAAAAAAAAAAkC4BHRRYTU1NnHfeeTn3tG/fPj796U9HS/f9738/Hn744Zx7unXrFhMnTmzys84+++zo2bNnnetbtmyJKVOmRCF8/etfj23bttW5vu+++2bv01RmKo+ZAAAAAAAAAAAAAACAdAnoSNqsWbNi8+bNzfa8TDz0yU9+MpYvX55z3xlnnBH77LNPg8+fN29ebN26NZrDjBkz4mtf+1refZMnT47u3bs3+XmdOnWKiy++OOeeW2+9NWbOnNmk59x5551x22235dxzySWXRMeOHaOpzFQeMwEAAAAAAAAAAAAAAOkS0JG0G264Ifr37599k1ombiumxYsXxwknnBCPPfZYzn0dOnSIK6+8slHPyIRJAwcOjGnTphUtDNyxY0c2TDrnnHOitrY2597MG8AybwkrlMxze/funXPPpEmTYs6cOY06/5lnnonPfe5zOff07ds3byDWEGYqj5kAAAAAAAAAAAAAAIA0CehI3l//+te47LLLsiHdV77ylXj22WcLen5NTU3853/+Zxx++OH1CoauuOKKGDBgQKOft3r16mw4lAmYLr300nj++eejUH7/+9/HscceGz/60Y/qtT8T8vXo0aNgz6+srIzrrrsu7897zJgx8cADDzTo7Pvuuy/Gjh0bmzZtyrnvBz/4Qeyxxx5RKGYqj5kAAAAAAAAAAAAAAIA0CehoNdauXZuNfoYPHx79+vWLr371q/HQQw/Fhg0bGnxWJg767W9/G2eeeWbst99+8e1vfzv75rZ8PvrRjxbsjW2Ze0+dOjWGDBkShxxySDYOfPDBB2P9+vUNOueNN96IX/7yl/HhD384jj/++Jg7d269vu+iiy6K008/PQptwoQJ2Z9rLm+//Xaceuqp8ZnPfCZeeumlnHurq6vjjDPOiNNOOy02btyYc2/mvPHjx0ehmak8ZgIAAAAAAAAAAAAAANLTpra2trbUl4BiycQ4mTda5dKmTZvs29wyEVrfvn2zQdxee+0VnTp1irZt22ZjuUzQk/n6l7/8JRYsWBAvv/xyNPR/OpnQLfOGt27dujV6nksuuSTv2+H+d55DDz00Gwpm5tlzzz2jY8eO/z+8W7duXfbNfJm38S1ZsqRRP9e77ror2rVrF8WQefvYsGHDYvHixfXaf8QRR8TIkSOzbxns0qVL9u8q83f01FNP1fsNfZmfVyYezHx/MZipPGYqR1VVVdkA8Z8NHjw4Fi5cWJI7AQAA0Dr0m/Jgqa8AQAGsvHZcqa8AQAH49zlAGvz7HAAAgGKraqW/f16c+gXKSCaEe+WVV7KfYvnIRz6SDfmaEs+1lHkmTpwYP//5z4sWz2Vk4qjf/e53MWrUqFi1alXe/fPnz89+GqtPnz7Z5xUzyjJTecwEAAAAAAAAAAAAAACkpaLUF4CUZd4Gd+mll8YjjzwSPXr0iHKWeRvfd7/73bjjjjuiffv2RX9e5m2As2fPjoEDBxb1OQcddFD2OZk4q9jMVB4zAQAAAAAAAAAAAAAA6RDQQZEcccQR8fjjj8d1110XHTt2jHJ21FFHxZ/+9KeYMmVKsz43E03NnTs3xo4dW5TzTzrppOz5xY6//i8zlcdMAAAAAAAAAAAAAABAGgR0JC0TfF1yySVx8MEHN9szhw8fnn1LWyY4O+644woe5Q0YMCCay9ChQ+Puu++OZ599NoYMGRKlsOeee8bDDz8ct9xyS/Ts2bMgZ2bOmTFjRjz00EMleTOgmcpjJgAAAAAAAAAAAAAAoPy1qa2trS31JaA5rFixIn73u9/F008/nQ3Cli1bFoX4r39FRUUcfvjhceqpp8aECRPiQx/6UBTbK6+8kn273ZNPPpkN9RYtWhTvvPNOwd4m9rGPfSzOPvvsbEDXkmzevDkbVN1www3ZmRtq8ODB8cUvfjHOOeecqKysjJbATOUxU0tWVVUV1dXVu/05Lly4sCR3AgAAoHXoN+XBUl8BgAJYee24Ul8BgALw73OANPj3OQAAAMVW1Up//1xAR6v11ltvxdy5c2PJkiXx8ssvZz8rV67M/vmmTZuyEdDWrVujbdu20bFjx+jcuXPss88+se+++0a/fv3i0EMPjcMOOyxGjBgR3bt3L+ksO3bsiBdffDH+/Oc/Z+dYtWpV9vPaa6/Fxo0bs3Ns2bIltm/fHh06dIhOnTpl77z//vtHr169srNkIsDM2/P69OkT5SDz95Z549m8efOy/yedmbWmpiY7Zya66tq1a3a2zP+JZ0LAk08+OQYNGhQtmZnKY6aWprX+AwYAAIDS8wu6AGnwC7oAafDvc4A0+Pc5AAAAxVbVSn//vF2pLwCl0qNHjxg9enT2U+4yUVwmPmppb4wrpoMPPjj7SYmZAAAAAAAAAAAAAAAACquiwOcBAAAAAAAAAAAAAAAAQIsgoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAAAAAAAAAgSQI6AAAAAAAAAAAAAAAAAJIkoAMAAAAAAAAA4P+xdydQVtf1//hfMGyyo2wuKIgIguKGJiqoJKISLqUpppmWZmXf0BZtU+vbt7TF3M20v1upZbnmkoL7gqKACQgoCIKgKPu+/8/n9hsaYObOzJ17Z7ifeTzOuWfu3Pf7vt7v18zQuZ3j87wAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSqVFdXwAAAKqq66WP1fUVAMiDGVcOresrAAAAAAAAAAAAUE+YQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApFKjur4AUHtWr14dU6dOjdmzZ8fSpUtjxYoV0bx582jVqlXssssu0bNnz2jSpEkUEz0VhzT2BAAAAAAAAAAAAAAAbPsE6KjXNmzYENOnT4+333473nvvvZg1a1Z88MEHma8LFizIhHyWL18eK1eujEaNGkWzZs2iXbt20blz59htt92id+/eceCBB8bhhx8ebdu2jW3R6NGj46GHHoonnngiJk6cGOvXr69wb0lJSfTp0yeOP/74OPHEE+OQQw6JbZGe9AQAAAAAAAAAAAAAAFAVDTZu3LixSjshBaZNmxYvv/xy5jF+/PiYMGFCJiRXUw0bNoz+/fvHF7/4xTjrrLMyIbu6dt9998VvfvObGDt2bM41knDg97///TjttNNiW6Cn8umpfkuCh5MmTdrq9STgmwQXIW26XvpYXV8BgDyYceXQur4CAHng8zlAOvh8DpAOPp8DpIPP5wAAABRan3r63583rOsLQG244IILMlPj9thjjzj77LPjj3/8Y7z++ut5Cc+VTrJLQnnf+c53okuXLpmvn376adSFyZMnxxFHHBHDhw+vUYAp8eabb8bpp58eRx11VEyZMiXqip6y0xMAAAAAAAAAAAAAAED5BOioF0aOHBkff/xxrZy1fPnyuO666zJhvdtuuy1q0wMPPBAHHXRQvPDCC3mt+9xzz0W/fv3iwQcfjNqmp6rTEwAAAAAAAAAAAAAAwOYE6KBAFi9eHOedd16cdtppsWrVqoKfd+ONN8Ypp5wSy5YtK0j9pO4XvvCFuOmmm6K26Kn69AQAAAAAAAAAAAAAAPBfAnRQYH/7299i8ODBmcl0hXLnnXfGt7/97di4cWMUUlL/wgsvjLvuuisKTU+50xMAAAAAAAAAAAAAAMB/NPp/X6HeKykpiV133TV69uwZ3bt3jzZt2kSrVq2idevWsX79+liyZEnm8e6778a4ceNixowZVa790ksvZSZ0PfbYY9GwYX5zq6+//npm0l1VAkyHHnponHHGGZmvXbt2zfS3dOnSmD59erzyyivxl7/8JV577bWsNZJzkvP22muvOOigg6IQ9KSnuuoJAAAAAAAAAAAAAABIlwYbCz02CLYBe+yxR0ybNm2z13bZZZc4/PDDY8CAAZmvvXr1iiZNmlS55kcffRT33HNP3H777TFhwoQqvef//u//4kc/+lHkSxLo22+//eL999/Puq9Hjx5x8803x2c/+9lKaz711FPxzW9+c6uf15a6desW48ePzwQM80lPeqqrnopVnz59YtKkSVu93rt375g4cWKd3AkKqeulj9X1FQDIgxlXDq3rKwCQBz6fA6SDz+cA6eDzOUA6+HwOAABAofWpp//9eX5HYcE2PmFu4MCBcfXVV8d7770Xs2bNinvvvTcT2Onbt2+1wnOJzp07x8UXXxxvvfVWJiDUrl27St/z85//PGbOnBn5ctlll1UaYDr66KNjzJgxVQowJY455ph444034qijjsq6Lzn3iiuuiHzTk57qqicAAAAAAAAAAAAAACB9BOioF37/+9/Hxx9/HM8//3xcdNFF0b1797zVbtiwYVxwwQXx2muvxc4775x17+rVq+MXv/hFXs5NEr833nhj1j39+/ePhx9+ONq0aVOt2m3bto1HH300Dj744Kz7rr/++njnnXciX/Skp7rqCQAAAAAAAAAAAAAASCcBOuqFYcOGxQ477FDQM3r06JEJ6LVs2TLrvmTq3dKlS2t83s9+9rNYt25dhevbb799/PWvf43mzZvnVL9Fixbxt7/9LRNoqkhyfjJVL1/0VH16AgAAAAAAAAAAAAAAqJgAHeRRMtkuCRdls3z58njmmWdqdM706dPjH//4R9Y9yaS7Ll261Oic3XbbrdJ+7r///pgxY0bUlJ5ypycAAAAAAAAAAAAAAIDyCdBBnn3729/OOjkr8cILL9TojBtvvDHWr1+fdRre+eefH/nwzW9+M3bfffcK15N7JPepKT3VjJ4AAAAAAAAAAAAAAAC2JkAHeda4ceM4/vjjs+555513cq6fhIbuvfferHsuuuiiKCkpiXxo1KhR/M///E/WPffcc09s2LAh5zP0VHN6AgAAAAAAAAAAAAAA2JoAHRRA//79s67PmTMn59rPPPNMzJ07t8L1Zs2axZlnnhn5dPbZZ0eTJk2y9vPcc8/lXF9P+aEnAAAAAAAAAAAAAACAzQnQQQF06tQp6/ry5ctzrv3oo49mXR86dGi0atUq8qlt27Zx3HHH1eheNXmvnqpGTwAAAAAAAAAAAAAAAJsToIMCaNOmTdb15s2b51x75MiRlYaYCqGyuk8//XTOtfWUP3oCAAAAAAAAAAAAAAD4LwE6KIB58+ZlXW/fvn1OdefOnRvvvPNO1j1HH310FMLgwYOzrk+cODE++uijatfVU37pCQAAAAAAAAAAAAAA4L8E6KAAZs2alXV99913z6nu66+/nnW9S5cumUchdO3aNXbcccese8aMGVPtunrKLz0BAAAAAAAAAAAAAAD8lwAdFMCTTz6ZdX3AgAE51R07dmzW9QMOOCAKqV+/flnXx40bV+2aeso/PQEAAAAAAAAAAAAAAPyHAB3k2QcffBAvv/xyheuNGjWKo48+Oqfa48ePz7ret2/fKKTK6ucSYtJT/ukJAAAAAAAAAAAAAADgPwToIM9GjBgR69evr3D9C1/4Quy000451Z46dWrW9R49ekQh7bHHHlnX33333WrX1FP+6QkAAAAAAAAAAAAAAOA/BOggj6655pp48MEHs06fu/TSS3OqvXHjxpgxY0aNQkY1VVn9yu63JT0Vhp4AAAAAAAAAAAAAAAD+Q4AO8mDt2rVx+eWXx0UXXZR13w9/+MPYb7/9cjrj448/jlWrVmXdk+tku6qqrP7y5ctj3rx5Va6np8LQEwAAAAAAAAAAAAAAwH8I0EENg3MPPfRQJhT385//POveY489Nn7605/mfNacOXMq3dO5c+copKrUr8o9q7NXT9WnJwAAAAAAAAAAAAAAgP9o9P++AlmsX78+lixZEkuXLo3Zs2fH+PHj480334yHH3445s+fX+n7k/Dcgw8+GI0bN875DpWd07p162jatGkUUvPmzaNly5axbNmyCvdU5edR1b16yo2eAAAAAAAAAAAAAAAA/kOADiJiwoQJsc8+++S9bqNGjTJT53784x9HSUlJjWotWLCg0hBTbUjOyRZiquye1dmrp9zpqe7deOONcdNNNxX8nGnTphX8DAAAAAAAAAAAAAAAKFYCdFAADRo0iBNPPDGuuOKK2HffffNSc+HChVnXW7VqFbWhsnOqE2LSU+Hoqe598sknMWnSpLq+BgAAAAAAAAAAAAAA1GsCdJBHvXr1ipNPPjnOPPPM6N27d15rr1q1Kut6ixYtoja0bNmyRveszl495U5PAAAAAAAAAAAAAAAAEQ3r+gKQFo0aNYrdd989dt5552jevHne669Zs6bS82tDZedUds/q7NVT7vQEAAAAAAAAAAAAAAAgQAd5s27dunj88cfjwgsvjO7du8fnP//5GD16dN7qpzHEpKfC0RMAAAAAAAAAAAAAAIAAHRTEhg0b4sEHH4z+/fvHGWecEQsXLsxLzWxKSkqiNlR2zvr166tcS0+FoycAAAAAAAAAAAAAAICI2hkbBNu4nXfeOW699dYK11euXBmLFi3KPD744IN4/fXXM1+r4t57740XXngh7r///kygrlDTt5IJeLWhsnMaN25c5Vp6Khw91b0OHTpE7969C37OtGnTYvXq1QU/BwAAAAAAAAAAAAAAipEAHUREu3bt4mtf+1q13jNv3rx44IEH4pZbbonx48dn3fvhhx/GkCFD4oknnojDDjsspzs2adJkmwgxrV27tkb3rM5ePeVOT3XvW9/6VuZRaH369IlJkyYV/BwAAAAAAAAAAAAAAChGDev6AlCsOnbsGBdccEGMGzcuRo0aFd27d8+6f+nSpXHsscfmHHSpbLrWmjVrothCTHoqHD0BAAAAAAAAAAAAAAAI0EFeDBo0KP7973/Hueeem3XfsmXL4swzz6w0CFSeli1bVlq7NiRBwJrcszp79ZQ7PQEAAAAAAAAAAAAAAAjQQd40b948brvttkpDdMnEuquuuqra9bfffvus60uWLInaUNk5ld2zOnv1lDs9AQAAAAAAAAAAAAAACNBBXjVo0CBuvfXWOPLII7Puu/baa2PlypXVqr3DDjtkXV+0aFHUhsWLF9fontXZq6fc6QkAAAAAAAAAAAAAAECADvKuYcOGcf3110dJSUmFez799NO46667qlW3ffv2WddXr15d8CDTggULYs2aNXkLMempMPQEAAAAAAAAAAAAAADwHwJ0UAB77713nHbaaVn3PPLII9Wqueuuu1a65+OPP45Cqkr9qtyzOnv1VH16AgAAAAAAAAAAAAAA+A8BOiiQk046Kev6Sy+9FBs2bKhyvZYtW1Y6YWvmzJlRSDNmzMi63rFjx2jRokWV6+mpMPQEAAAAAAAAAAAAAADwHwJ0UCDHHntsNGxY8T+xJUuWxJQpU6pVs1u3blnX33333Sik9957r0b3y+U9eqo+PQEAAAAAAAAAAAAAAPyHAB0USKtWraJ9+/ZZ98ybN69aNfv06ZN1vbqBvOqqrH5l98vlPXqqPj0BAAAAAAAAAAAAAAD8hwAdFFCnTp2yrs+fP79a9Q444ICs6+PGjYtCGjt2bNb1/fffv9o19ZR/egIAAAAAAAAAAAAAAPgPAToooNatW2ddX7lyZV5DTOPHj4/169dHIaxbty7eeuutWg9m6al69AQAAAAAAAAAAAAAAPBfAnRQQMuXL8+63qJFi2rV69evXzRr1qzC9WXLlsWbb74ZhfD666/HihUrKlxP7nXggQdWu66e8ktPAAAAAAAAAAAAAAAA/yVABwU0a9asrOvt2rWrVr0kKHTYYYdl3fP0009HIYwcOTLr+oABA7IGrCqip/zSEwAAAAAAAAAAAAAAwH8J0EGBfPjhhzF//vyse7p3717tuoMHD866/sADD0Qh/P3vf8+6fswxx+RcW0/5oycAAAAAAAAAAAAAAID/EqCDAnnqqaeyrrdq1Sp23nnnatc95ZRTsq6PHTs2pkyZEvk0YcKEePvttytcb9CgQaX3ykZP+aEnAAAAAAAAAAAAAACAzQnQQYHccccdWdcHDBiQCf9UVzK17pBDDsm65/rrr498uu6667KuH3roodG1a9ec6+spP/QEAAAAAAAAAAAAAACwOQE6KIBnnnkmXnjhhax7hgwZknP9c889N+v67bffHnPnzo18mD17dtx9991Z93zlK1+p8Tl6qhk9AQAAAAAAAAAAAAAAbE2ADvJs6dKlcf7552fd07hx4xg+fHjOZ5x11lnRsWPHCtdXrFgRl156aeTDJZdcEqtWrapwvVOnTpn71JSeakZPAAAAAAAAAAAAAAAAWxOgI9VGjhwZy5cvr7XzkvDQySefHNOmTcu67/TTT48OHTrkfE6zZs3iO9/5TtY9d911Vzz44INRE3/729/innvuybpnxIgR0bRp06gpPeVOTwAAAAAAAAAAAAAAAOUToCPVbrjhhujWrVv89re/zYTbCmnKlClx1FFHxahRo7Lua9KkSVxxxRU1Pi8JD3Xp0iXrnrPPPjtef/31nOqPHj06vvrVr2bds9tuu1UapqoOPVWfngAAAAAAAAAAAAAAAComQEfqffLJJ/H9738/E6T77ne/G6+99lpe6y9dujR+8pOfRN++fasUGLr88stj9913r/G5zZs3j6uvvrrSux1zzDHxz3/+s1q1H3744RgyZEgsW7Ys677f/e53sd1220W+6ElPddUTAAAAAAAAAAAAAACQTgJ01Bvz5s3LhH4OOeSQ6Nq1a3zve9+LJ554IhYuXFjtWkk46PHHH48zzjgjOnfuHP/3f/8Xa9asqfR9n/3sZ+OSSy6JfDnllFMyd8hm8eLFccIJJ8SXvvSlmDx5cta9kyZNitNPPz1OOumkWLJkSda9Sb0vfOELkW960lNd9QQAAAAAAAAAAAAAAKRPg40bN26s60tAoSRhnGSiVTYNGjSILl26RM+ePWO33XbLBOK23377aNasWZSUlGTCckmgJ/k6c+bMGD9+fLz//vtR3X86++23Xzz//PPRunXryKdkUle/fv1iypQpVdq///77x6GHHpqZyNeyZctMX0k/L7/8crz11ltVqtGrV68YM2ZM5v2FoCc91VVPxahPnz6ZAOKWevfuHRMnTqyTO0Ehdb30sbq+AgB5MOPKoXV9BQDywOdzgHTw+RwgHXw+B0gHn88BAAAotD719L8/b1TXF4C6lgThPvjgg8yjUAYOHJgJ8uU7PJdIgkT/+te/YsCAATFr1qxK948bNy7zyNWuu+6aOa+QASY96amuegIAAAAAAAAAAAAAANKlYV1fANIsmW530UUXxVNPPRVt27Yt2DnJ5LxnnnkmunfvHoW0xx57ZM5JgkyFpqfc6QkAAAAAAAAAAAAAAOA/BOigQPbff/949tln4+qrr46mTZsW/LwkYDRmzJgYMmRIQeofe+yxmfqFDkqVpafq0xMAAAAAAAAAAAAAAMB/CdCRapdeemmMGDEi9txzz1o785BDDon77rsv3njjjTjiiCOiNrVr1y6efPLJuOOOO6Jjx455qZnUufPOO+OJJ54o6BS9iuipavQEAAAAAAAAAAAAAACwNQE6Ui0Js/3+97+PKVOmxLRp0+Kmm26KM888M3r06BENGjTIyxkNGzaM/fbbLy677LL497//Ha+++mqcdtppmdfrytlnnx3Tp0+PG2+8Mfbaa6+cavTu3Tvz/vfffz++/OUvR13TU/n0BAAAAAAAAAAAAAAAULEGGzdu3JhlHVJr0aJFMWbMmJg6dWomqJM8ZsyYkXl92bJlsXz58li5cmWUlJRE06ZNo0WLFtGhQ4fo1KlTdO3aNXr16hV777139O/fP9q0aRPbsqTHZDrY2LFjY+LEifHhhx/G0qVLY8WKFdG8efNo1apV7LLLLpng0gEHHBDHHXdcJmS4LdOTnviPPn36xKRJk7Z6PfmZJj9zSJuulz5W11cAIA9mXDm0rq8AQB74fA6QDj6fA6SDz+cA6eDzOQAAAIVWX//780Z1fQGoK23bto3BgwdnHmm35557Zh5poqfikMaeAAAAAAAAAAAAAACA4tGwri8AAAAAAAAAAAAAAAAAAIUgQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKnUqK4vQPW99957MXfu3Pj0009j9erV0aZNm9h9992jR48e0bChTCQAAAAAAAAAAAAAAABAQoCuSIwePTpuuummGDlyZHz88cfl7kmCdEOGDInzzz8/jjrqqFq/IwAAAAAAAAAAAAAAAMC2xLiybdycOXPic5/7XBx22GHxl7/8JT766KPYuHFjuY9FixbF3/72tzj66KNj8ODBMW3atLq+PgAAAAAAAAAAAAAAAECdMYGuBpLAWu/evWPdunVbrTVp0iTGjx8f7du3z7n+uHHjYtiwYTF37txMQC7RoEGDrO8p3Tdq1Kg48MAD4957743jjjsu5zsAAAAAAAAAAAAAAAAAFCsBuhp46KGHMhPhtpSE3E4//fQahecmT54cgwYNisWLF2+quWVIrrxzS/cle5YsWRInn3xy/OMf/4ihQ4fmfBcAAAAAAAAAAAAAAACAYtSwri9QzO6///7NgmtlQ24XX3xxznXXrl2bCeAl4bnSukkgrvRRkbJ7St+3Zs2aGD58eCaQBwAAAAAAAAAAAAAAAFCfCNDlaMWKFTFy5MhyJ8MdeOCBmUeurr322vj3v/+92TS5ssoG9rZ8bHmX5LVly5bFBRdckPN9AAAAAAAAAAAAAAAAAIqRAF2O3njjjcykuC0Dbklg7cQTT8y5bhJ2++Uvf5k1PFf6+paPsutbvvfFF1+Me+65J+d7AQAAAAAAAAAAAAAAABSbRnV9gWI1evToCteGDRuWc90//vGPsWjRokwQbstgXiJ5rXHjxjF48OA47LDDon379vHpp5/Gm2++GY8++mgm1Ffee5Pvf/CDH8Rpp50WJSUlOd8PAAAAAAAAAAAAAAAAoFgI0OXo1Vdf3fS87NS3Ll26RN++fWsUoCtbr7R+aSDuoIMOij//+c/Ro0ePrd47e/bsOOOMM+Kll17a9J7kUVpv7ty58eSTT8bQoUNzvh8AAAAAAAAAAAAAAABAsWhY1xcoVpMnT94s6FYaVOvXr1/ONd94442YOnXqpnqJ0iBc8nWfffaJUaNGlRueS+yyyy6Z9UMOOWSz4FxZd999d873AwAAAAAAAAAAAAAAACgmAnQ5mjlzZrmvJyG3XP3973/Puv6HP/whWrZsmXVP48aN469//Ws0a9Ys831piK40iPfoo4/GypUrc74jAAAAAAAAAAAAAAAAQLEQoMvBxx9/HKtWrdpsUlypvn375lz38ccf32xqXNnpcwMGDIj+/ftXqU6XLl3ivPPO23S3sndM7j1u3Lic7wgAAAAAAAAAAAAAAABQLATocvDBBx9UuNa9e/ecan700UcxYcKEckN5iSQQVx1nn312hWsCdAAAAAAAAAAAAAAAAEB9IECXgyVLllS41qZNm5xqvvjii5t9X3YSXdOmTeOkk06qVr0DDjggdtxxx61qJQToAAAAAAAAAAAAAAAAgPpAgC4HK1asyHuA7qWXXtrqtWQSXRJ+O+KII6JFixbVrrnvvvuWO81u8uTJOd0RAAAAAAAAAAAAAAAAoJgI0OU5QNe6deucar7yyisVrh177LE51ezVq9dWryWBukWLFuVUDwAAAAAAAAAAAAAAAKCYCNDlYNWqVRWurVu3rtr1Vq5cGW+99VZm2lx5Bg0aFLno2LHjZt+X1l+8eHFO9QAAAAAAAAAAAAAAAACKiQBdDrbbbrsK15YvX17teq+++uqm4F0yIa5skK5Nmzaxzz775HTPli1blvv6kiVLcqoHAAAAAAAAAAAAAAAAUEwE6HKQhNoqsmjRomrXe+6557Z6rTRI179//8hV06ZNy319xYoVOdcEAAAAAAAAAAAAAAAAKBYCdDlo3bp1hWvTpk2rdr1nn322wrUBAwZErlavXl3u682bN8+5JgAAAAAAAAAAAAAAAECxEKDLQbt27SpcmzJlSrVqzZ8/P0aPHp2ZNleegQMHRq6WLl1a7ustW7bMuSYAAAAAAAAAAAAAAABAsRCgy8Eee+wRTZo0yTzfMvg2atSoatV69NFHY/369ZnnGzdu3KxeMinu4IMPzvmec+bMKfd1AToAAAAAAAAAAAAAAACgPhCgy0GjRo1i7733zgTeSiXBt+T7Z555JlatWlXlWnfcccdWr5UG6Q499NDMWbn64IMPyq3boUOHnGsCAAAAAAAAAAAAAAAAFAsBuhztt99+m56XDdItXbo0brnllirVePvtt+OFF17YFL7b0qBBg2p0x0mTJm01IS+x++6716guAAAAAAAAAAAAAAAAQDEQoMvR4MGDt3qtNAj3i1/8Yqvpb+W5+OKLs65/7nOfy/l+SZDv/fffL3dtjz32yLkuAAAAAAAAAAAAAAAAQLEQoMvRiSeeGK1bt84833KC3Pz582Po0KExbdq0Ct//gx/8IEaNGrXZe8s+33///aNPnz453++VV16JDRs2ZJ5vOd2ue/fuOdcFAAAAAAAAAAAAAAAAKBaN6voCxapZs2Zx6qmnxp/+9KdM8K00qFb6fOLEiZkQ3Nlnnx3Dhg2LXXfdNdatWxfjx4+Pm266KV577bVN79lSUuOcc86p0f2effbZCtf22WefGtUGAAAAAAAAAAAAAAAAKAYCdDXwve99L+6+++5Yu3btpulxZUN0y5Yty4TlkseWSveVnT5XqkOHDvGVr3ylRnd79NFHN9UsW7tly5YCdAAAAAAAAAAAAAAAAEC90LCuL1DMevbsGd/97ne3miJXGo4rG6rb8lE2PLfl+376059GixYtcr7XlClT4p133tlUs2ztgw8+eLNAHQAAAAAAAAAAAAAAAEBamUBXQ0nY7R//+Ee8++67m4XiyoboylM2PFd2UtxBBx0UF1xwQY3udNddd1W41r9//xrVhm3JunXrYtq0aTFjxoxYunRpZupjs2bNonXr1rHjjjtmQq7NmzePYqInAAAAAAAAAAAAAACA/BGgq6EkBPLYY4/F4YcfHvPmzdsUhiudNFeZsvs7d+4cDzzwQJSUlOR8n/Xr12cCdBUF94466qica6fR2rVrY/LkyTFhwoSYOHFi5uvs2bNj0aJFmcfixYszv4/k97z99tvHTjvtFN26dYu+fftmwo6HHnpoNGnSpK7bqFfefvvtzL+Txx9/PMaPHx9r1qypcG/y76BHjx5x7LHHxgknnBCDBg3aJicw6qk4egIAAAAAAAAAAAAAAIqPAF0edO/ePV555ZU48cQTMwGsLSfPbRmk2zIYkqwn4ZGHH344E9CqiSSw8uGHH26ahlf2rGTa08CBA6M+27BhQ4wbNy6eeeaZGDVqVLz44ouxYsWKSqdnrV69OhOme//99+Pll1/etJZMzTrmmGPi7LPPjs997nPRqFHt/JPq2rVrzJw5M+rKrbfeGl/72tdq9cx//etfceWVV8Zzzz1X5fck/wamTp2aeVx33XWx5557xkUXXRTnnXdejYKq+aKn4ugJAAAAAAAAAAAAAAAoXg3r+gJpkUwle+ONN+Kyyy6LFi1abDaBrjRQVzZYV7reuHHjuOCCC+L111+PXr161fgev//97zedUTY8lzwfPHhwvQyjJAG4JNRz7rnnRocOHaJfv37xgx/8IPNaZeG5yiTvf+ihh+Lkk0/OhH7++Mc/ZqYAkj9JIPTzn/98ZjpZdUJZ5UkCWt/4xjfiwAMPjNdeey3qip6KoycAAAAAAAAAAAAAAKD4CdDlUZMmTeKKK66I2bNnxy233JKZSNe5c+dNYbnSR6tWreLoo4+OX/3qVzFt2rS46aabok2bNjU+P5moNnr06K3OKw3yJRPS6pOJEydmJlglv4Mk1HP77bfHggULCnZeMp3u61//ehx88MGZKXfUXDIh8IADDogHH3wwr3XfeuutGDBgQNx8881R2/RUHD0BAAAAAAAAAAAAAADp0KiuL5BGrVu3zgS3kkdi1apVsWjRoszzHXbYITN1rhA2bNiQmUBXkSTQV588+uijcdttt9X6uWPHjo3+/fvHtddemwnUkZuHH344Tj311Fi7dm1B6id1v/nNb8bMmTPjyiuvjNqgp+LoCQAAAAAAAAAAAAAASA8BulrQrFmzzBS0Qhs8eHDmQd1bvXp1XHDBBTFnzpz42c9+VtfXKTpPP/10nHbaaQULZZV11VVXRYsWLeKnP/1pQc/RU3H0BAAAAAAAAAAAAAAApIsAHfw/JSUl0adPn9hrr72iW7du0b59+0xgJ5kgOH/+/Jg7d2689NJLMWXKlCrX/PnPfx7NmzePSy65pKB3T5MZM2bEF7/4xUwIsTL77LNPnHXWWTFgwIDo0aNHtGnTJpYvXx6zZs2K0aNHx1//+tcYNWpUbNy4MWudyy67LPr27VuwKY16Ko6eAAAAAAAAAAAAAACA9BGgo17r1atXDBs2LI477rj4zGc+kwm7VSYJ0v3xj3+M66+/PhOsq8wPf/jDTIDo+OOPj9pw6KGHxjnnnFPQM5IgVCGsW7cuM9Fs0aJFWfd16tQp8/M/9dRTt1pLwlnJY++9946vfe1rMWbMmMw0wLFjx2atmfzMxo8fH7vuumvkk56KoycAAAAAAAAAAAAAACCdBOiod9q2bRtf+cpXMhOxDjjggGq/f8cdd4zLL788vve978WIESPitttuy7o/maqVBIQmTZqUObvQkglfyXnF6IYbbojXX38965599903Hn/88dhpp52qVPOggw6KV155JRO8uvfeeyvct3Dhwszv84EHHoh80lNx9AQAAAAAAAAAAAAAAKRTw7q+ANSWPfbYI2655Zb48MMP4/e//31O4bmyWrRoEbfeemvceeedUVJSUunUuquuuqpG56XdJ598EldccUWlv8Onn366yqGsUk2bNo277747TjzxxKz7HnzwwRg5cmTki56KoycAAAAAAAAAAAAAACC9BOhIvT333DP+/Oc/x+TJk+P888+P5s2b57X+l7/85bj++usr3ZfsWbJkSV7PTpPf/va3sXjx4grXmzRpEn/729+iQ4cOOdVPQo5J2LFr165Z91122WWRL3oqjp4AAAAAAAAAAAAAAID0EqAjtTp16hQ33XRTTJw4Mb70pS9VOiWuJr7xjW9kgnTZLF++PBMsYmtJsDCZDpjNiBEjYv/996/ROW3atIlrr702655XX301XnzxxagpPRVHTwAAAAAAAAAAAAAAQLoJ0JFa55xzTibY1qhRo1o575e//GWl0+0eeuihWrlLsUkmjmWbata2bdv48Y9/nJezTjjhhBgwYEDWPdddd12Nz9FTcfQEAAAAAAAAAAAAAACkW+0ki9jKhg0bYurUqTF79uz48MMPM5OdVq5cGatXr46NGzdu2nfZZZfV6T2pup133jmGDx8ef/rTnyrck0zMSn73DRvKrpZ19913Z10///zzo3Xr1nk777vf/W7W6WWPPvpoJiiWTELLlZ6KoycAAAAAAAAAAAAAACDdBOhqyfr16+OZZ56Jp556Kp5//vmYMGFCJixXGQG64vK5z30ua4AuCUrOnDkzunXrVqv32pa9++67MWbMmKx7zjvvvLyeOWzYsNhxxx1j7ty55a4n/zb/8Y9/xLnnnptTfT0VR08AAAAAAAAAAAAAAED6GYNVYLNmzYrvf//7melkxx57bFx99dXxxhtvxKpVqzKT5rI9quvJJ5+MgQMHlvu46qqrCtIfm0t+1pWZPn16rdylWCRTxLI58MADY4899sjrmckEwC9+8Ys1uldN3qunbaMnAAAAAAAAAAAAAAAg/QToCmThwoXxzW9+M3r06JEJzc2bN2+zYFyDBg2yPnJx5JFHZqZEvfzyy5s9Xnrppfjtb38b69aty3OXbGn77bePJk2aZN2zaNGiWrtPMRg5cmTW9aFDhxbk3MrqPvvss5nJkbnQU3H0BAAAAAAAAAAAAAAApJ8AXQE8+OCDsddee8Utt9wSa9asyYTmygvI5WvyXKlmzZrFt7/97U01ytZasGCBSU21pH379lnXV65cWWt32dYloc4XXngh656jjz66IGcPGDAg82+mIosXL44xY8ZUu66eiqMnAAAAAAAAAAAAAACgfhCgy7NLL700TjnllE0T57IF5grh/PPPj6ZNm2aebznJ7s477yzImWxuxYoVWdezhYHqm4kTJ8by5csrXG/cuHEcfPDBBTk7+T3sv//+WffkEszSU3H0BAAAAAAAAAAAAAAA1A8CdHmSBOLOOeec+M1vflNhcG7LKXRbTqTL1/Szk046abOAXlI/+f6JJ56IJUuW5O0strZ06dLMRKxs2rVrV2v32daNHTs263rv3r03BUILoV+/flnXx40bV+2aeiqOngAAAAAAAAAAAAAAgPpBgC5PvvWtb2UmvJUG5coLzpV9rZDT6M4666xNz8vWXrduXTz77LN5PYutgzyV/T67d+9ea/fZ1o0fPz7ret++fQt6fmX1cwlm6ak4egIAAAAAAAAAAAAAAOqHRnV9gTS49dZb4w9/+MNmIblSZV9Lnh966KFx5JFHxsCBA2O33XaLHXbYIR544IG44IILNk2Kq6ljjjkm2rZtm5mEtuV0u5EjR8aJJ55Y4zMo32OPPZZ1vXXr1rHrrrvW2n3Wr18f77//fnzwwQfxySefxMqVK6OkpCSaN2+eucsuu+wSXbp0iZYtW0ZdmDp1atb1Hj16FPT8PfbYI+v6u+++W+2aeiqOngAAAAAAAAAAAAAAgPpBgK6GkmDSxRdfvFV4rmxwrWHDhjF8+PC45JJLok+fPlvVSAJN+dSoUaMYPHhw3H///ZvuURrOGzVqVF7PYvOw2l//+tesew4//PDM30Oh/yYvv/zyzO86mcy1YsWKSt+z++67x4EHHhiDBg2K448/vtZCfkm4rybBqZqqrP7y5cszwcMOHTpUuaaeiqMnAAAAAAAAAAAAAACgfhCgq6ERI0Zkwhtlp8eVDdPtuOOOcd9998WAAQNq9V6lAbrSe5TeacqUKTFv3rzo2LFjrd6nPnjooYdi5syZWfeccMIJBb/Hs88+m3lUx/Tp0zOP0r+Z5O/161//epx22mmZQGYhJH+Xlf28dtpppyikzp07ZwKNGzZsyBoeq2owS0/F0RMAAAAAAAAAAAAAAFB/FHYUVsq9/fbb8fDDD282ba5skK5v374xfvz4Wg/PJQ499NCs9yb/0+cuu+yyrHuaNGkSp556ahSDF198Mc4888zYa6+9Kp2ql6uFCxfGqlWrKg1OFVISDtxhhx2y7pkzZ06V6+mpOHoCAAAAAAAAAAAAAADqDwG6Grj22ms3heXKTnlLJJPnHnvssTqbiJQEn1q0aJF5XvZeicmTJ9fJndLs5ptvjkmTJmXdc/bZZ8f2228fxeS9996L008/PYYNGxYfffRRXmvPnz+/0j21MSmxU6dONb5ndfbqqe57AgAAAAAAAAAAAAAA6o9GdX2BYrV27dp44IEHtgqnlQbp/vznP8fOO+9cZ/dL7tCzZ88YO3asAF2BzZgxI374wx9m3dO4ceO45JJLolj985//jAMPPDAeeeSRzNd8WLBgQaV7WrdunZezanJGVe5Znb16qvueasuNN94YN910U8HPmTZtWsHPAAAAAAAAAAAAAACAYiVAl6OXXnopFi1alAmnlYbmSr8OGTIkjjzyyLq+YvTo0SMToNvS1KlT6+Q+abR+/frMZLlly5Zl3TdixIjo3r17FLM5c+bEwIEDM5MV8/H3vXDhwqzr2223XZSUlEShtWrVKm/BLD0VR0+15ZNPPql0MiUAAAAAAAAAAAAAAFBYAnQ5evHFFytc+9GPfhTbgp122mmr15KQ37x58+rkPmn005/+NF544YWse7p06ZLZVxuSkN5nPvOZ2GeffWLvvfeObt26RZs2bTKPJOiUhKHmz5+febzxxhvx/PPPZ/6WP/300yrVX7FiRQwbNiyeeeaZOOigg2p011WrVmVdb9GiRdSGli1b1uie1dmrp22jJwAAAAAAAAAAAAAAoP4QoMvR+PHjNz1Pps6Vatu2bRx22GGxLejYseNm35dOyVu6dGmd3SlNHn300bjyyiuz7kl+5v/f//f/VTo9qyaSqXAnnnhiDB06NHr27Jl1b4cOHTKPRPJ3+p3vfCczRe/++++PX//61zFu3LhKz0um7X3hC1/ITDds3759zvdes2ZN1vVGjWrnf54qO6eye1Znr562jZ4AAAAAAAAAAAAAAID6o2FdX6BYTZ8+fbPvk2BaEpYaNGjQZoG6ulTRZCgBupqbMGFCfOlLX8r83rO58MIL4+ijj877+e3atcuE3yZPnpyZInfxxRdXGp6rSElJSZx++umZQNw999xTpbDfrFmz4vzzz4+aSGMwS0+FI0AHAAAAAAAAAAAAAADkQoAuR3Pnzi03KNetW7fYVjRt2rTc1wXoambevHkxbNiwSn+OBx10UPz2t78tyB3GjBkT11xzTc6huYoMHz483nzzzejbt2+lex988MF44okncj5rw4YNlQb7akNl5yQT+qpKT8XREwAAAAAAAAAAAAAAUH/UzuigFFq+fHm5r3fs2DG2FStWrCj39XXr1tX6XdJi2bJlcfzxx8eMGTOy7tthhx3i/vvvjyZNmhTkHoWc+tWjR4/MVLsjjzwy3nrrrax7f/zjH8dxxx1XkB5q6++0snMaN25c5Vp6Ko6eakuHDh2id+/eBT9n2rRpsXr16oKfAwAAAAAAAAAAAAAAxUiALkcVhRVatWoV24oFCxaU+/p2221X63dJgzVr1sTJJ5+cmdCWTfLzffjhh2O33XaLYtW2bdt45JFH4oADDoj58+dXuG/cuHExatSo+OxnP1vtMyoLF9ZWMGvt2rVZ16sTgtRTcfRUW771rW9lHoXWp0+fmDRpUsHPAQAAAAAAAAAAAACAYtSwri9QrCoKoS1cuDC2FRXdpXnz5rV+l2K3fv36GD58eIwcObLSKVjJ5LnDDjssit2uu+4aV199daX77rrrrpzqVzYxLAksFlswS0+FU4wBOgAAAAAAAAAAAAAAoO4J0OWoRYsW5b6ebVpXbfvwww83+37jxo2Zr507d66jGxWn5Of2ta99LR544IGs+xo2bJgJkw0dOjTS4qyzzoq+fftm3ZNM26ss3FSeli1bZl1ftmxZ1IalS5fW6J7V2aunbaMnAAAAAAAAAAAAAACg/hCgy1ESQisNpJU1a9as2Fa88sor0aBBg81eS75PJotRdd/5znfijjvuqHTfH/7whzj99NMjTZK/lxEjRmTds3jx4hg3bly1a2+//fZZ15NQ3qpVq6LQlixZUqN7VmevnraNngAAAAAAAAAAAAAAgPpDgC5H3bp12ypolATqXnrppdgWvPfee/Hxxx9nnm8Z9Ntzzz3r6FbF50c/+lFcf/31le773e9+F+edd16k0cknnxyNGzfOuufVV1+tdt0ddtih0j2LFi2KQqvsjKrcszp79VT3PQEAAAAAAAAAAAAAAPWHAF2OevXqtel52YDa3LlzY/r06VHXRo4cWeFav379avUuxeqXv/xl/OpXv6p0389+9rO4+OKLI63atm0b++23X9Y9kydPrnbd9u3bV7rno48+ikKr7IzqBLP0VBw9AQAAAAAAAAAAAAAA9YcAXY4OO+ywCtfuueeeqGs33HBDZipeeT7zmc/U+n2KzbXXXhs//vGPK933/e9/Py677LJIuwMOOCDr+owZM6pds3nz5pWGnkqnKBbKihUrYunSpVn37LbbblWup6fi6AkAAAAAAAAAAAAAAKg/BOhydOihh0ZJSUnmeWlQLfmaTKO7/vrrY/Xq1XV2t8cffzwmTZqUeZ7cp/RepZPzunbtWmd3KwZ//OMfY8SIEZXuu/DCC+PXv/511AeV/c3MmzevIHVnzpwZhVSV+tX996Kn4ugJAAAAAAAAAAAAAACoHwToctSuXbsYNGjQpmBa6dfEp59+Gtdcc02d3GvNmjXxk5/8pNy1JEh38skn1/qdisndd98dF1xwQaX7vvrVr8Z1110X9UWbNm0qnRCWi27dumVdf/fdd6OQ3nvvvazrnTp1ykxgqw49FUdPAAAAAAAAAAAAAABA/SBAVwPDhw/f6rXSaW+XXXZZjBkzptbvdPHFF8f48eM33aN0Ol7p3c4555xav1OxuP/++zM/n7JhyIp+78mUurI/27Rr0qRJ1vW1a9fmVLdPnz5Z16dMmRKFVFn9yu6Xy3v0tG30BAAAAAAAAAAAAAAA1A8CdDVwxhlnxI477ph5XhpYK32eBIq++MUvxgcffFBr97nrrrvipptu2uwuidIg3ZAhQ6J79+61dp9i8sgjj8SXvvSlWL9+fdZ9yQS/5OfcsGH9+qezcuXKrOvbbbddTnUPOOCArOvjxo2LQho7dmzW9f3337/aNfVUHD0BAAAAAAAAAAAAAAD1Q/1KARVgKtf3vve9rcJqiSSwNnPmzOjfv39mIlyh3XDDDfHVr34161S0yy+/vOD3KEb/+te/MmHHyqaoHXfccXHfffdFo0aNor756KOPsq63bNkyp7qVBbNmz54d8+bNi0J58803az1spqdtoycAAAAAAAAAAAAAAKB+EKCroW9/+9ux1157ZZ6XhtfKhujmzp0bhx9+ePziF7+IVatW5f38GTNmxEknnRTf+c53Nk1PK3t+6fS5008/PQ4++OC8n1/snnvuucxUudWrV2fdN2jQoHjggQcyocn66L333su6vvPOO+dUd5dddonddtut0t9RIcyZMyemTp2adU/yb7e69FQcPQEAAAAAAAAAAAAAAPWDAF0NJdPIbr311igpKakwRLdixYrM9LeePXvGb3/72/jggw9qfO4rr7wS55xzTia89+ijj24KypU9t1THjh3jmmuuqfGZafPqq6/GsGHDYuXKlZWGcx555JFo1qxZ1FevvfZa1vVu3brlXPvoo4/Ouv70009HIYwcOTLreo8ePSoNjVVET8XREwAAAAAAAAAAAAAAkH4CdHlw6KGHxlVXXbUpvFZqy0lws2bNiksuuSQTNvrMZz4T3/zmN+OGG26If//73xXWfvbZZ+Pxxx+PO+64I6644orMtLTOnTvHgAED4q677spMTisNz5UqG+JLgn3Jezt06FCw/ovRm2++Gccdd1wsW7Ys676DDjooHnvssWjRokXUV5MmTcpMOsymb9++OdcfPHhw1vUkvFg6XTGf/v73v2ddP+aYY3Kurafi6AkAAAAAAAAAAAAAAEi/RnV9gbS46KKLYtq0aXHTTTdtFmArDbdtOZluzJgx8cYbb2xWo3St7Nfypj6VDeptWbfsnmQtmTw3ZMiQPHdb3N5+++3Mz2Tx4sVZ9+27777xr3/9K1q3bh31WRLUrEqINFdDhw6N5s2bZyY1lmfevHmZKWT5/DtesGBB5nebzamnnppzfT0VR08AAAAAAAAAAAAAAED6mUCXR8k0ua9//eubTZ4rG6QrfW3L17cMv5VVds+WgbzywnNlJ9H97Gc/i29961sF6rY4TZ06NTNJa/78+Vn39e7dO55++ulo165d1GcLFy6MW265Jeue7t27Zx65atmyZZxwwglZ91x//fWRT3/4wx9izZo1Fa536dIlBg4cmHN9PRVHTwAAAAAAAAAAAAAAQPoJ0OXZzTffHL/+9a83BdkqCsyVDcGVDb1tact9FYXvSteS7xs2bJgJnvzkJz+plZ6LxYwZM+Kzn/1sfPzxx1n39ejRIzNJq0OHDlHf/fCHP4xFixZl3fPFL36xxuece+65Wdcff/zxGD9+fOTDsmXLKg16ffnLX87677Iq9FQcPQEAAAAAAAAAAAAAAOkmQFcA3/ve92LUqFHRtWvXcifPJbacKledCXRbTpwrG6pLznzhhRfi/PPPL2iPxWbOnDmZ8Nzs2bOz7kt+fs8880zsuOOOUd/9/e9/r3T6XElJSXz1q1+t8VnJVMC+fftWuJ78bY8YMSLy4Ve/+lV89NFHFa43bdo0vv3tb9f4HD0VR08AAAAAAAAAAAAAAEC6CdAVyBFHHBETJkyIH/3oR9GiRYutgnQ1mZpU3jS6xo0bx3e/+9146623on///nnrIw0++eSTTHhu+vTpWfftsssumfBc8nVbNGnSpFi4cGGtnPX00x7yEeoAAQAASURBVE/HWWedVem+U089Nbp3756XMy+55JKs688//3z8/ve/r9EZr7zySmZCZDZf+cpXolOnTpEPeiqOngAAAAAAAAAAAAAAgPQSoCug7bbbLn7xi19kgls/+clPYqeddtpsglzZIFx1HonSOkk471vf+la888478Zvf/CZatWpVx11vWxYtWhTHHHNMTJ48Oeu+zp07Z8Jz3bp1i23VU089Fbvvvnv87//+b8yfP78gZyR/U1deeWUcf/zxsWrVqkr/vn/5y1/m7ezhw4fHQQcdVGl469FHH82p/rvvvhunnHJKrFu3rsI9yb+fK664IvJFT8XREwAAAAAAAAAAAAAAkF4CdLWgffv28fOf/zxmzpwZTz75ZFx44YWZqV2lIbjqPlq3bh2f//zn4+67744PP/wwrr/++m06+FVXli1bFscdd1yMHz++0t/PqFGjokePHlEMgcDLLrssdt111zjvvPPi5Zdfzlvt5OeU/Lx++MMfZg0vlUoCTPn8u0vCoTfccEPW6Yxr167NTL277bbbqlU7+TklUyHnzp2bdd/ll1+eCVPmi56KoycAAAAAAAAAAAAAACC9GmwsHYdGrVu4cGGMGzcuMx1t1qxZMWfOnFi6dGmsXLkyE0Bp2rRpNG/ePHbYYYdMYCqZPrb//vtHz5496/rqRWHYsGHxz3/+s9J9yQS//fbbL2rLjjvuGEOHDq32+6655pq46KKLtnq9S5cumXqDBw+OQw89tFrBouRv8Lnnnoubb745nn766Sq/74QTToiHHnooa4gqVz/+8Y+rNNnu2GOPzQRTs01DS0KrV111Vdx6662VhgKT4FYSpCwpKYl801Nx9FSs+vTpE5MmTdrq9d69e8fEiRPr5E5QSF0vfayurwBAHsy4svr/nwiAbY/P5wDp4PM5QDr4fA6QDj6fAwAAUGh96ul/fy5AR2p17do1E8zZ1iQBoCS0lq8AXXkBvV69emUCl0mYbvvtt49mzZplAkdJYG7BggXx6aefxhtvvBETJkzITDWsjv79+8e//vWvaNWqVRTC+vXrY9CgQfHCCy9UaX/S64ABAzITBJPpjMuXL88EUl977bUYPXp0lfrr2LFjJsy60047RSHoqTh6Klb19QMM9Zf/AAAgHfwHAADp4PM5QDr4fA6QDj6fA6SDz+cAAAAUWp96+t+fN6rrCwD5NXfu3Mzj2WefzXvtI488Mh555JGChecSSdAvmW531FFHxVtvvVXp/mSCY/LIVdu2bTOBwEKGsvRUHD0BAAAAAAAAAAAAAADp07CuLwAUh//5n/+Jp59+uqDhuVLt2rXLnNWvX7+CnpNMNEtCWfvtt18Ump6KoycAAAAAAAAAAAAAACBdBOiArPbcc8945pln4tprr41GjWpvaGWHDh3ixRdfjC9/+csFqX/QQQfFG2+8EQcffHDUFj0VR08AAAAAAAAAAAAAAEB6CNBBkejVq1f07t271s7r0aNH/OlPf4oJEybEUUcdFXWhWbNmceedd8Y///nP2H333fNSM5mgd/XVV8err74aXbp0idqmp+LoCQAAAAAAAAAAAAAASAcBOigSxx57bEycODE+/vjjuO++++Ib3/hG9OvXLxNeypckqHTeeefF888/H1OmTIlzzz03GjduHHVt6NChMXny5Lj77rszE8lysdtuu8WvfvWrmDFjRlx00UVRUlISdUlPxdETAAAAAAAAAAAAAABQ3BrV9QWgUJIAThp17NgxTjvttMwjsX79+njnnXfirbfeiunTp8esWbMyj9mzZ8fixYtjxYoVmcfq1aujUaNGmcBdMt1rxx13jJ133jl69uwZ++yzTybwlDzfViVBvjPPPDPzSPp74oknYsyYMTFp0qSYOXNmLFmyJNNn06ZNN/W31157xX777RdDhgyJfffdN7Y1eiqOngAAAAAAAAAAAAAAgOIlQAdFLpnQtffee2ce9UUyKe/888/PPNJCTwAAAAAAAAAAAAAAAPnXsAA1AQAAAAAAAAAAAAAAAKDOCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKnUKOqhQYMGRX3VoEGDGDVqVF1fAwAAAAAAAAAAAAAAAKDg6mWA7rnnnssEyeqbjRs31su+AQAAAAAAAAAAAAAAgPqpXgboygbK6gvBOQAAAAAAAAAAAAAAAKC+qdcBOqEyAAAAAAAAAAAAAAAAgPSq1wE6E+gAAAAAAAAAAAAAAAAA0qteB+iEygAAAAAAAAAAAAAAAADSq14H6OrTBDoAAAAAAAAAAAAAAACA+qZeBugGDhxo+hwAAAAAAAAAAAAAAABAytXLAN1zzz1X11cAAAAAAAAAAAAAAAAAoMAaFvoAAAAAAAAAAAAAAAAAAKgLAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApFKjur5AfbJ69eqYMGFC5jFjxoyYO3duzJ8/P1auXJlZW79+fcHv0LNnz7j55psLfg4AAAAAAAAAAAAAAABAXROgK7BZs2bFX/7yl3jyySdj9OjRsXbt2jq9z7Jly+r0fAAAAAAAAAAAAAAAAIDaIkBXIK+//nr8/Oc/zwTnNm7cmHmt9CsAAAAAAAAAAAAAAAAAhSdAl2cLFiyIESNGZKbObRmaa9CgQZ3dS3gPAAAAAAAAAAAAAAAAqG8E6PJo/PjxccIJJ8SHH364KbC2ZWiuLoJsdRncAwAAAAAAAAAAAAAAAKgrAnR58sorr8SQIUNi+fLlW4XWsk2hqyhQV17orarhu/LeK0QHAAAAAAAAAAAAAAAA1DcCdHnw3nvvxec+97lMeK40qJYtNLflennKe39Vw3d1MeUOAAAAAAAAAAAAAAAAYFsjQFdD69ati+HDh8eiRYuyhudKX2vSpEl07tw580jeM3Xq1MyeZL3s14EDB2aeL168OBYuXBgLFiyIZcuWbVa3bO2yzxs1ahT9+/ePhg0bbnXfnj17FvgnAgAAAAAAAAAAAAAAALBtEKCroZtuuinefPPNrYJyZb8vKSmJL3/5y3HqqafGoEGDMiG6xJ/+9Kc477zzyq377LPPbvXaJ598Eq+88kq8/PLL8dhjj8U777yz2Vml1q9fnwnP3XnnnbHrrrvmuWMAAAAAAAAAAAAAAACA4rD1iDKqbMWKFfG///u/WcNzBx54YCZgl4Tljj322E3huVx06NAhTjzxxPj1r38dEydOjCeffDKOP/74cifevfDCC7H//vtnvgIAAAAAAAAAAAAAAADURwJ0NXDPPffE/PnztwrPlT4fOHBgZpJc3759C3L+McccE//85z/j4YcfzoTrygbpkucLFy6MIUOGZNYBAAAAAAAAAAAAAAAA6hsBuhq4/fbbN/u+dPpbYrfddovHH388WrZsWfB7DBs2LCZMmBCDBg3aLMiXPFavXh3Dhw+P1157reD3AAAAAAAAAAAAAAAAANiWCNDlKJk8l4TSyobmEkmALXntlltuiebNm9fafdq3b58J7CUT58pOokvusmrVqjj55JMzE+kAAAAAAAAAAAAAAAAA6gsBuhw999xzsWHDhs1Cc6VfjzjiiBg8eHCt36lJkyZx//33x5577rnV2scffxw/+MEPav1OAAAAAAAAAAAAAAAAAHVFgC5HY8eOrXDtq1/9atSVli1bxh133LHZa6Xhvttvvz0mTZpUZ3cDAAAAAAAAAAAAAAAAqE0CdDmaMGHCZgG1UiUlJfH5z38+6tIhhxwSJ598ciY0V1by/XXXXVdn9wIAAAAAAAAAAAAAAACoTQJ0OZo9e/Zm35eG1fbaa6/Ybrvtalx/3bp1NXr///zP/5Q7he6ee+6pcW0AAAAAAAAAAAAAAACAYiBAl6M5c+ZsNnkukXzfr1+/vNRfu3Ztjd4/cODA6NChw1avL1++PF566aUa1QYAAAAAAAAAAAAAAAAoBgJ0OUqCaOXZaaedqlyjYcOKf/zLli2Lmjr88MM3TcYr69lnn61xbQAAAAAAAAAAAAAAAIBtnQBdjlauXFnu623atKlyjaZNm1a4tnTp0qipvfbaq9zXJ02aVOPaAAAAAAAAAAAAAAAAANs6AbocNW7cuNzXW7dunZcA3ccffxw11alTp61eSybSTZ06tca1AQAAAAAAAAAAAAAAALZ1AnQ5qigoV9FkuvK0a9euwrU5c+ZETW0Z0GvQoEHm67x582pcGwAAAAAAAAAAAAAAAGBbJ0CXo1atWpX7+uLFi6tco0OHDhWuTZ8+PWpq6dKl5b6+bNmyGtcGAAAAAAAAAAAAAAAA2NYJ0OWobdu2sXHjxhoF6HbZZZcK1yZMmBA19emnn5b7+urVq2tcGwAAAAAAAAAAAAAAAGBbJ0CXo+7du5f7+oIFC6pco127drH99ttnnjdo0GDT1ySY9/rrr9f4jmPHji339TZt2tS4NgAAAAAAAAAAAAAAAMC2ToAuR7169drqtST4NnHixGrV6dOnz6ZJdmUn2k2dOjVmz56d8/2SKXOjR4/eFMwra4cddsi5LgAAAAAAAAAAAAAAAECxEKDLU4CuNKiWBOjKBuEq85nPfKbCtfvuuy/n+917772xdOnSzPOyAb3knu3bt8+5LgAAAAAAAAAAAAAAAECxEKDL0d57773pednA3KpVq2LKlClVrjNw4MCtXktCbknN6667LjNJrrpWrlwZv/zlL8udPpfYf//9q10TAAAAAAAAAAAAAAAAoNgI0NUgQLfDDjtknm8ZVHvttdeqXOfoo4+O7bbbblOdsmG8Dz/8ML7+9a9X+24XXnhhvPfee5nn5U3DO+qoo6pdEwAAAAAAAAAAAAAAAKDYCNDVwBFHHFFuQO2hhx6qco1mzZrFSSedtFmd5HlpmO7uu++O7373u7F27dpKa61ZsybOPffcuP322zcL45UN+DVs2DCOPPLIKt8PAAAAAAAAAAAAAAAAoFgJ0NXAlpPcSkNrTz/9dKxatarKdb7xjW9s9VrZEN0111wT/fr1ywTjFi1atNXeTz/9NG677bbo2bNn3HnnneWeUVrvlFNOie23377KdwMAAAAAAAAAAAAAAAAoVo3q+gLFbPDgwVsF1BIrV66Mp556Kk444YQq1Tn88MMzU+Gee+65zSbHlQ3Rvf322/G1r30tvv71r0enTp2ic+fOUVJSEvPmzYsPPvggs6fsxLnyJuMlfvSjH+WhcwAAAAAAAAAAAAAAAIBtnwl0NbDnnnvGvvvuu1l4rtStt95arVq/+93vonHjxpnnZWuVrZ08X7duXXz44Yfx5ptvxuuvvx4zZsyIDRs2bNq3ZXiu9Pvk6xlnnBH77LNPDbsGAAAAAAAAAAAAAAAAKA4CdDV02mmnbfZ9aWDtiSeeiMmTJ1e5zv777x+XXXZZuZPjyobjSh9lzyv72pbhudKvvXr1iltuuSWnHvn/2bvzKKnKa2/AuwdGGRVUVBAVnEVU1BsVDWg0iGJMIkqcEmeTmBhNrklMHJJcp0u8F41zvu+Lmpg44IQaDc6oqCioOOMAkaAgiMxjw7dOmcYGuqu7q6u6uk8/z1pnVdU5b73v3t1tFn/kt3YAAAAAAAAAAAAAAAAAzZAAXQONGDFiTXCt8kokU+H++7//u157nX/++XHssceuFZirVHXvRF2eV97v2rVr3H333dG+ffsGdAoAAAAAAAAAAAAAAADQvJQXu4Dmbsstt4w///nPsWDBgvWetWnTpt773XzzzdGhQ4fMtLjqJstVN6GuqnVDdb169YoHHnggtttuu3rXAgAAAAAAAAAAAAAAANCcCdDlwXe+85287VVaWhrXXXddHHDAAXH22WfHrFmz1ps2V5vKkN1xxx0Xo0aNykygAwAAAAAAAAAAAAAAAGhpSotdANU75phj4oMPPoj//u//ju233z4TiqvL1bZt20ygb8KECXHLLbcIzwEAAAAAAAAAAAAAAAAtlgl0TVj79u3j3HPPzVzvvfdePPPMM/Hmm2/GtGnTYsGCBbF8+fJo165ddO/ePbbZZpvYc889Y7/99st8DwAAAAAAAAAAAAAAAKClE6BrJvr06ZO5AAAAAAAAAAAAAAAAAKib0jquAwAAAAAAAAAAAAAAAIBmRYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJXKi10AuZs7d24sW7YsOnfuHO3atSt2OQAAAAAAAAAAAAAAAABNigBdM7Fo0aK4/fbbY+zYsTFu3LiYNWtWVFRUrHm+8cYbx4ABA+Kwww6L73znO9GxY8ei1gsAAAAAAAAAAAAAAABQbKXFLoDskpDcyJEjY6uttopTTz017rjjjpgxY0asXLkyVq9eveaaOXNmPPTQQ/H9738/Nt988/jd734Xy5cvL3b5AAAAAAAAAAAAAAAAAEVjAl0DrFixIk488cRMmG1dJSUlcc0110S3bt1y3n/+/PnxrW99Kx5//PFMSK7q3tWpXLNw4cK48MIL495774277747evXqlXMNAAAAAAAAAAAAAAAAAM2VAF0DjB07Nv72t79VG2jbd999GxSeW7BgQQwcODBef/31TDCuujPWDdVVXZM8mzhxYuy3337xxBNPxDbbbJNzLQAAAAAAAAAAAAAAAADNUWmxC2jO7rjjjrUCa5VX4pxzzmnQ3ieddFJMnjw5874yGFf1jKrhuerOr/zO9OnTY+jQoTFv3rwG1QMAAAAAAAAAAAAAAADQ3AjQ5WjVqlVx3333rQmqVZ0A16tXr/jGN76R89733ntvjB49er3gXFWV51W9KlWur7w3ZcqUOPfcc3OuBwAAAAAAAAAAAAAAAKA5EqDL0WuvvbZmqltluK0ytNaQ8FwSzDvvvPPWfK4pOFfT1LmqQbrKe8nzP/3pTzFhwoSc6wIAAAAAAAAAAAAAAABobsqLXUBz9fzzz9f4bNiwYTnve9ddd2UmxlUG36qqGpzr3Llz7LXXXtGtW7eYPXt2vPrqqzFr1qw1Ibp1p9Alwbwf/vCH8cILL+RcGwAAAAAAAAAAAAAAAEBzIkCXo/Hjx695X3XqWxJs23///XPe97rrrlvvXtXg3EYbbRQjR46MY489NsrLv/z1VVRUxOjRozMhuTlz5qwXokteX3rppcw1YMCAnOsDAAAAAAAAAAAAAAAAaC5Ki11Ac/Xaa6+t9bkyqJZMhSsrK8tpz6lTp8ZTTz211vS5dcNzTz75ZJx44olrhecSyZnDhw/PBOQ23XTTtb5b1V/+8pecagMAAAAAAAAAAAAAAABobgTocpSE3aoLqPXr1y/nPe+6665q71eG86688srYaaedsu7Rq1ev+Nvf/rYmgFepMpT317/+NVatWpVzjQAAAAAAAAAAAAAAAADNhQBdDubNm5e5EusG1RoSoBszZsxan6sG9Pr06RPHH398nfYZOHBgHH744WuCd1Vr/PTTT+P111/PuUYAAAAAAAAAAAAAAACA5kKALgfTpk2r8dn222+f054LFy6M8ePHrzfVrjIEd9ppp9Vrvx/84Ac1Pps0aVJONQIAAAAAAAAAAAAAAAA0JwJ0OZgzZ06Nz7p27ZrTns8991ysXLlyrdBcpeT9iBEj6rXfoEGDomPHjmu+X5UAHQAAAAAAAAAAAAAAANASCNDlYPHixTU+69y5c057PvPMM+vdS4J0iT322CM222yzeu3XqlWr2G233dbsUdXkyZNzqhEAAAAAAAAAAAAAAACgORGgayIBumeffbba+8n0uCFDhuS05w477LDevSRQN3v27Jz2AwAAAAAAAAAAAAAAAGhOBOhysGTJkhqfJYG3+lq1alW8+OKLNX538ODBkYstttii2trmz5+f034AAAAAAAAAAAAAAAAAzYkAXQ5atWqV03S6mrzyyiuxaNGiNRPiqgbpWrduHf/xH/+RU50dOnSo9r4AHQAAAAAAAAAAAAAAANASCNDloFOnTjU+W7BgQb33e/LJJ9e7Vxmk22OPPTIhuly0b98+bzUCAAAAAAAAAAAAAAAANDcCdHkO0E2dOjUvAbpKAwcOjFytWLGi3hP0AAAAAAAAAAAAAAAAANJCgC4HnTt3rvHZlClT6rXXsmXL4oknnshMm8t3gG7RokXV3u/YsWPOewIAAAAAAAAAAAAAAAA0FwJ0Odhmm23WBN7WDb49++yz9dpr7Nixa4Juq1evXmu/srKyBgXoZs6cWe39Dh065LwnAAAAAAAAAAAAAAAAQHMhQJeDDTbYIPr27bvWvST4lgTgHn744Xrtddttt613L9knsdtuuzVoWtz06dOr3bdr16457wkAAAAAAAAAAAAAAADQXAjQ5ah///5rAmmVr4kZM2bEvffeW6c9Zs2aFXffffd6U+wSyb3Bgwc3qMa33nqr2n179+7doH0BAAAAAAAAAAAAAAAAmgMBuhztu+++1d5PwnS//vWvY+nSpbXucfHFF8fy5cvXfG9dBx98cM71rVixIt55551qw3l9+vTJeV8AAAAAAAAAAAAAAACA5kKALkfHHHNMlJeXZ94nIbUkAFcZVnvzzTfjxBNPXBOOq84999wTN9xww1oBt6rvN9988xg0aFDO9b388ss1hvO22WabnPcFAAAAAAAAAAAAAAAAaC4E6HLUvXv3OOSQQ9YKp1WG6JLXu+66K/baa68YPXp0LFu2bM2a6dOnx89//vNMAG/VqlVrvrfuHieccEKD6nv66adrfLbDDjs0aG8AAAAAAAAAAAAAAACA5uCLEWrk5KyzzooHH3xwrXtVQ3SvvfZaDB8+PPO5W7dusXLlypg7d+5669adPte6des4/fTTG1TbAw88sOZ91b1btWoVAwYMaNDeAAAAAAAAAAAAAMD6ev987f9vMQDN09TLhha7BCCPTKBrgIMPPji++c1vrgnDVar6OXmfTJqbNWtWfPbZZ5nP665f93tnnnlm9OzZM+e6Zs+eHePHj1+vpsSuu+4abdq0yXlvAAAAAAAAAAAAAAAAgOZCgK6BRo0aFR07dsy8ry5EV9NVuWbd72288cbx61//ukE1/fWvf42Kioq1zqg85ytf+UqD9gYAAAAAAAAAAAAAAABoLgToGmjzzTfPBNbKysqqDdFVDbBVvbdueC753Lp167jrrruia9euDarpT3/6U43PBg4c2KC9AQAAAAAAAAAAAAAAAJoLAbo8OPTQQ2P06NHRvn379SbPVReaS6z7vG3btnHLLbfEvvvu26Baxo8fH5MmTcrsXVlLpfLy8jj44IMbtD8AAAAAAAAAAAAAAABAcyFAlyeHH354TJw4Mfbff//1JsxVdyUq1+24447xzDPPxPDhwxtcx6hRo9a8rxqeS97vt99+0bFjxwafAQAAAAAAAAAAAAAAANAcCNDlUd++fePJJ5+Mxx57LEaMGBFdunRZa/pc1atdu3ZxyCGHxO233x6TJ0+O3XffvcHnv/vuu3HXXXetmT637uS7ww47LA9dAgAAAAAAAAAAAAAAADQP5cUuII0GDRqUuZLg2nvvvRcffPBBzJ07N/Nso402iu7du8fOO+8c5eX5/fEnU+ySSXg1OfLII/N6HgAAAAAAAAAAAAAAAEBTJkBXQMkkuGQqXXI1hpNOOilzAQAAAAAAAAAAAAAAABBRWuwCAAAAAAAAAAAAAAAAAKAQBOgAAAAAAAAAAAAAAAAASKXyYhdA8zBp0qQYM2ZMtc8uuOCCRq8HAAAAAAAAAAAAAAAAoDYCdNTJxIkT46KLLoqSkpL1ngnQAQAAAAAAAAAAAAAAAE2RAB31tnr16jXvqwvUAQAAAAAAAAAAAAAAADQFpcUugOYnCc0JzgEAAAAAAAAAAAAAAABNnQAdDZpABwAAAAAAAAAAAAAAANBUCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdBRbyUlJcUuAQAAAAAAAAAAAAAAAKBWAnQAAAAAAAAAAAAAAAAApFJ5sQugeejYsWNsueWWxS4DAAAAAAAAAAAAAAAAoM4E6KiT4cOHZy4AAAAAAAAAAAAAAACA5qK02AUAAAAAAAAAAAAAAAAAQCEI0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkErl0QKVlZVFS1VSUhIrV64sdhkAAAAAAAAAAAAAAAAABdciA3SrV68udgkAAAAAAAAAAAAAAAAAFFiLDNBVTmJraQQHAQAAAAAAAAAAAAAAgJakxQboWlqgrCUGBgEAAAAAAAAAAAAAAICWrbTYBQAAAAAAAAAAAAAAAABAIbToCXSmsgEAAAAAAAAAAAAAAACkV4sN0K1evbrYJQAAAAAAAAAAAAAAAABQQC0yQHfhhRcWuwQAAAAAAAAAAAAAAAAACkyADgAAAAAAAAAAAAAAAIBUKi12AQAAAAAAAAAAAAAAAABQCAJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKRSebELaCmWLVsWzz77bEyaNClef/31mDp1anz88ccxZ86cWLJkSeb5qlWrCl7HgAED4oUXXij4OQAAAAAAAAAAAAAAAADFJkBXQEuXLo3Ro0fHrbfeGk8//XQmJFfV6tWrG72mYpxJ07By5cp4//33M+HNBQsWxMKFC6Nt27bRqVOn6NGjR2y33XbRvn37aE701DyksScAAAAAAAAAAAAAAKB5EKArgCQoN2rUqPj9738fs2fPrjG4VlJSUoTqqGrFihXx9ttvZ6YCvvHGG5nX6dOnx+eff5655s2bF2VlZZmwz4YbbhibbbZZbLXVVtGvX7/Yc889Y5999onWrVtHUzV58uS4++6746GHHopXXnklli9fXuPa5O+xb9++8fWvfz2GDRsWgwcPbpJ/o3rSEwAAAAAAAAAAAAAAQF0J0OXZs88+GyeffHJMmTJlrdBcXcIghZoOl5xt8twXVq1aFZMmTYrHH388HnvssRg3blwsXry41ulZSSgyCdN9+OGHmd9xpWRq1sEHHxwnnnhiHHbYYVFe3jT+k3rkkUfisssuiyeffLLO30n+Rt59993MddVVV8W2224bP/nJT+LUU0/NhAiLTU9f0BMAAAAAAAAAAAAAAEDdldZjLbW48cYbM5OTKsNzSXCt8kok97JdFEYSgEtCPSeddFJ07949BgwYEP/5n/+ZuVdbeK42yffvvffeOPLIIzOhn+RvoKKiIorlX//6V3zzm9/MTPKqT4CpOkmY6cwzz4w99tgjXnjhhSgWPWWnJwAAAAAAAAAAAAAAgJoJ0OXJNddckwl8rFixIvO5utBc1UBd1WBddapbW9t3avpu1XstyRtvvJGZYLXppptmQj3/7//9v/jss88Kdl4yne7000+PvfbaKzPlrrEl0/R23333uOeee/K676uvvhoDBw6M6667LhqbnupOTwAAAAAAAAAAAAAAAOsToMuDhx9+OH70ox+tCcklqk6VyzaFribZJtTVFqYz5e4LY8aMiT/+8Y8xZ86cRj134sSJ8ZWvfCVuuOGGRjvzvvvuiwMPPDBmzZpVkP2TYOj3v//9+PnPfx6NRU/1pycAAAAAAAAAAAAAAIC1la/zmXpKwlnf/e531wvPVap6r1WrVrHPPvvElltumZmK9tZbb2VCXsmayu9Xvl5wwQWZ9/PmzYu5c+dmJqd98MEHme9UF8yrlDwrLy+PU045JTbZZJP16t1ss80K/BMhsWzZsjjjjDNixowZcfHFFxf0rLFjx8bRRx+9ZvphIV1++eWxwQYbxK9//euCnqOnhtETAAAAAAAAAAAAAADAFwToGug3v/lNZvJSZfituuBcr1694re//W184xvfiI4dO65Z83/+z//JBOiqc+GFF1Z7//PPP4/nnnsuHnjggbj11ltj0aJFa4XokvcrV66M0aNHx4033hhHHHFEHrtNt7Kysthpp51ihx12iK222iq6deuWCewsXbo0E5T8+OOP45lnnol33nmnXn8f7du3j/POO68gNU+dOjWGDx+eCezVZpdddonjjz8+Bg4cGH379o3OnTtn/n4++uijeP755+P222+Pxx57rNZJhUm4s1+/fgX729KTnorVEwAAAAAAAAAAAAAAkD4lq2tLLFCjJFDVu3fvTGAtUXUyXOX7008/Pa688spo167det9PAnSnnnpqtRPoKioqaj0/mU530003xSWXXJIJ1lW3z3/913/Fz3/+82iJLrvssvjFL36Rdc32228fhx9+eAwZMiT23nvvTNitLr/3JJx49dVXZ4J1tUl+D0ng8dBDD418Sv7u9t1333jxxRezrksmESa1HnXUUbXuOWHChMzkvIkTJ2Zd17Vr13jllVcy4dB80pOeitVTc5YEf99888317u+4447xxhtvFKUmKKTeP3+w2CUAkAdTLxta7BIAyAP/PgdIB/8+B0gH/z4HSAf/PgdIB/8+B0gH/z4nrXZqof//89JiF9CcJeG1FStWVBueS17POeecuO6666oNz+VDMsXppz/9abz66qsxaNCgNedWreP888+vNUTW0nTp0iXOPvvsePnll+Ott96KK664IvPzq0t4LtGjR4/MhMBp06bFKaecUuv65PeQrEtCjvn0hz/8odYA06677poJJNUlwJTYc889MxMOR4wYkXXd3LlzMz/DfNOTnorVEwAAAAAAAAAAAAAAkE4CdA3wl7/8ZU1gbd3w3P777x8jR45slDp69uwZjz32WCYsV3WgYGU9SUAsCfu1dH369Ikbbrgh/vWvf8X//M//xO67796g/TbYYIPMz/Xmm2+OsrKyWqfWXX755ZEvn376aVx00UW19jt27NjYbLPN6rV3mzZt4tZbb40jjjgi67p77rknHn300cgXPempWD0BAAAAAAAAAAAAAADpJUCXo/fffz+mTJmSeV918luidevWRQms/fa3v41f/vKX1YbozjrrrMy0tZZo2223jT//+c/x9ttvx2mnnVbnSXN1dcIJJ8TVV19d67pkzfz58/NyZhLOnDdvXo3Pk7/BO+64I7p3757T/kkgMAkG9u7dO+u6Cy64IPJFT/WnJwAAAAAAAAAAAAAAgOwE6HI0bty49e5VBumOPPLIzASmYvjd734XQ4YMWStEl1i+fHmcccYZ0ZJssskmce2118Ybb7wRxx57bK1T4hrizDPPzATpslm0aFEmWNRQSQgvmaSXzdlnnx277bZbg87p3LlzjBo1Kuua8ePHV/vfQn3pKXd6AgAAAAAAAAAAAAAAqJkAXY4mTZpU47NTTjmlUWtZ14033hjt2rVb87lyOt4zzzwTY8eOjZbie9/7XibYVl5e3ijnXXLJJbVOt7v33nsbfE4ynSvbBLAuXbrE+eefH/kwbNiwGDhwYNY1V111VYPP0VPD6AkAAAAAAAAAAAAAAKB6AnQ5euedd9YLqCWS4NqgQYMavP+6E+TqY/PNN4/TTz+92j0ETgon+bmPGDEi65pkYtaqVasadM6tt96a9flpp50WnTp1inw599xzsz4fM2ZM1lBVXeip4fQEAAAAAAAAAAAAAACwPgG6HE2fPn2t4FwSVks+9+/ff637uVq5cmWDvp8E6KpKakpqfOSRR2L+/PkNrI6aHHbYYVmfJz/7adOm5bz/lClTYsKECVnXnHrqqZFPhx9+ePTo0aPG58uWLYvRo0fnvL+e8kNPAAAAAAAAAAAAAAAA6xOgy9HMmTOrvZ8E6PJh+fLlDfr+dtttF3369FnvfkVFRTz66KMN2pua7b///rWu+eCDD3LeP5m4lc0ee+xR7e+9IUpLS2P48OENqqsh39VT3egJAAAAAAAAAAAAAABgfQJ0OVqyZEm197t161bnPcrLy2t8tmDBgmior3zlK5mpc+t69tlnG7w31dtwww2jdevWWdd8/vnnOe9fW/hx6NChOe/dkH2feOKJTDgzF3rKHz0BAAAAAAAAAAAAAACsTYAuR0uXLq32fpcuXeq8R7agVUNCVpX69u1b7f233367wXtTs9pClDWFL2uzcuXKePrpp7OuOeigg6IQBg4cGG3btq3x+bx582LChAn13ldP+aUnAAAAAAAAAAAAAACAtQnQ5ahdu3bV3m/fvn2D90jMnDkz8jENraqSkpLMRLr33nuvwXtTs8WLF2d9ni0MlM0bb7wRixYtqvF5q1atYq+99opCSGrebbfdsq7JJcSkp/zSEwAAAAAAAAAAAAAAwNoE6HLUqVOnau8vXLiwzntstNFGNT776KOPoqHKysqqvT937twG7031FixYkJmIlU3Xrl1z2nvixIlZn++4447Rpk2bKJQBAwZkfT5p0qR676mn/NMTAAAAAAAAAAAAAADAlwTo8hyg+/zzz+u8R/fu3Wt89sEHH+RUV11qqU/Ij/pJgjzJlL9sttlmm5z2fuWVV7I+79evXxRSbfvnEmLSU/7pCQAAAAAAAAAAAAAA4EsCdDlKpsdVF5SqbfpYVVtuuWWUlJRk3le+1jWwUhcff/xxtfdXrVrV4L2p3oMPPlhr8LJXr1457f3uu+9mfd63b98opD59+mR9PmXKlHrvqaf80xMAAAAAAAAAAAAAAMCXBOhytO2221Z7f+bMmXXeo127drHZZputdS8J0iXBvOeff77BNda0x4YbbtjgvVlfRUVF3H777VnX7LffflFamtt/dh9++GGDQkYNVdv+ixYtik8//bRee+op//QEAAAAAAAAAAAAAADwJQG6HG2//fbVBt9ee+21eu3Tv3//NZPsqk60S4J4DZlCl4RJJk2atNZku8r9k+l55N+9994b06ZNy7pm2LBhOe2d/O5q23vdMGa+bbrpprWG/2oLWlWlp8LQEwAAAAAAAAAAAAAAwJcE6PIUoKs0ZcqUWLp0aZ332XvvvWt8dvPNN0eubrjhhlixYsV6wbwkULfJJpvkvC81T5+74IILsq5p3bp1HHXUUTntP3fu3Fr/rpKQUSGVl5fXGr6cMWNGnffTU2HoCQAAAAAAAAAAAAAA4EsCdDlKJsdVqhpQW7VqVbz++ut13ufAAw9c717lNLs//vGPMX369HrXlkyLGjly5FrT56raZ5996r0n2V133XXx5ptvZl1z4oknxoYbbpjT/nPmzKl1zcYbbxyFVlv4si511metnnKjJwAAAAAAAAAAAAAAgC+U//uVeurVq1dstdVWMXXq1PWCak8//XQMGDCgTvv8x3/8RyZ88umnn64JzlXut2jRovjmN78ZzzzzTGZ6WV0sWLAgjj766Jg/f/6a/dY1aNCgOu1F3SR/A7/4xS+yrmnVqlWcd955OZ/x2Wef1bqmU6dOUWi1nVGXOuuzVk+50VPTcM0118S1115b8HPef//9gp8BAAAAAAAAAAAAAADNlQBdAyRBtP/7f//vegG6e+65J84555w67ZF89/jjj4/f//73a/apDNElry+//HIMHjw4br311kxgL5tkAtqxxx4br7766lrhuar1dezY0QS6PKqoqMhMllu4cGHWdWeffXZss802OZ8zd+7crM/btWsXZWVlUWjJ30++Qkx6Khw9NQ1JMLq2yZQAAAAAAAAAAAAAAEBhlRZ4/1Rbd5JbZWjt+eefj9mzZ9d5nzPPPHNNAKW6EN1zzz0X/fr1ywS1xowZk5k2lEynW7p0afzzn/+M0aNHx3HHHRf9+/eP1157rdozKvc7/fTTo02bNg3qmy/9+te/zkwczKZnz56ZdQ2R/K6z2WCDDaIxdOjQoUF11metnnKnJwAAAAAAAAAAAAAAgC+YQNcABx98cCb4tmrVqrXuJ5/vu+++OPnkk+u0z9Zbb50Jx607za5qiC4JzP35z3/OXDWpOnGuuulzbdu2jXPPPbfefVK9JMx42WWXZV2T/PyT32tt07Nqs3z58qzPy8sb5z/l2s6prc76rNVT7vQEAAAAAAAAAAAAAADwBRPoGqB79+4xePDgNWG1Ssnnq6++ul57XXrppdGtW7fM++pCdJWhuGxX1XXr1pPcv/DCC2PjjTduUM984fXXX49jjz12vZ/1un74wx/GQQcd1ODz0hhi0lPh6AkAAAAAAAAAAAAAAOALAnQNdMwxx6z1uTL8Nnny5Hj00UfrFcarOoFu3RBd5b1sV9W1VfdIXocNGxb/+Z//2aBe+cKsWbPi8MMPjwULFmRdt+eee8bIkSPzcua6Uw7XlUxCbAy1nVNRUVHnvfRUOHoCAAAAAAAAAAAAAAD4QuOMDkqxb37zm3HGGWfEihUr1rqfBNmuuOKKek0fO+ywwzKT65KpZYmq0+Rqm3S2rqqBuj322CNuueWWen2f6i1cuDAOPfTQmDp1atZ1G220Udx5553RunXrRpm+tXLlymgMtZ3TqlWrOu+lp8LRU9OQBKN33HHHgp/z/vvvx7Jlywp+DgAAAAAAAAAAAAAANEcCdA3UuXPneOedd6oNL1SdIldXZ555ZnTt2jVOPfXUWLRoUbWT6Gqy7nnJ+mRS2p///Ofo2LFjvWthbcuXL48jjzwyXn755azr2rVrF/fdd19sueWWeTu7tiBeY4WY1g2Krqs+gUE9FY6emoYf/OAHmavQdtppp3jzzTcLfg4AAAAAAAAAAAAAADRHAnR50Lt377zud8wxx8Ree+0VP/rRj+Khhx5aE46rSyCvMmS38cYbxyWXXBInnXRSXmtrqSoqKmLEiBHx6KOP1joFK5k8t+++++b1/NqmayXhvuYWYtJT4egJAAAAAAAAAAAAAADgC6X/fqWJ2XrrreOBBx6Il156Kc4444zYbLPNMuG4bFdpaWnsv//+ceONN8bUqVOF5/Ik+dmecsopcffdd2ddl/z8b7nllhg6dGjea+jQoUPW5wsXLozGsGDBggbVWZ+1esqdngAAAAAAAAAAAAAAAL5gAl0Tt/vuu8e1116buZJQ3JtvvhnTpk3LhEmSyU/t2rWL7t27xzbbbBO77bZbtG/fvtglp86Pf/zj+NOf/lTruuuvvz4zPbAQNtxww1qncy1dujTatm0bhTR//vwG1VmftXrKnZ4AAAAAAAAAAAAAAAC+IEDXjPTu3Ttz0Xh++ctfxtVXX13rut///vdx6qmnFqyOjTbaqNY1n3/+eWy66aYFq6HyjIbWWZ+1esqNngAAAAAAAAAAAAAAAL5Q+u9XYB2XXHJJXHrppbWuu/jii+Occ84paC3dunWrdc0nn3xS0BrqckZ9Qkx6Khw9AQAAAAAAAAAAAAAAfEGADqoxatSoOP/882td97Of/SwuuOCCgtfTvn37WgNCM2fOLGgNixcvjgULFmRds+WWW9Z5Pz0Vhp4AAAAAAAAAAAAAAAC+JEAH67jxxhvj7LPPrnXdD3/4w7jiiiuisfTu3Tvr82nTphX0/LrsX1uN9V2vp/rTEwAAAAAAAAAAAAAAwJcE6KCKW2+9Nc4444xa15188slx1VVXRWPaaqutsj6fMmVKQc9/7733sj7fZJNNMtPK6kNP+acnAAAAAAAAAAAAAACALwnQwb/deeed8b3vfS9Wr16ddd2IESMyU+pKSkqiMe20005Zn7/zzjsFPb+2/WurL5fv6Kn+9AQAAAAAAAAAAAAAAPCl8irvqaff/OY31d4fNmxY9O/fP4pp0qRJMWbMmGqfXXDBBY1eT1N3//33x7HHHhsVFRVZ1x155JFxyy23RGlp42dPd99991p/54U0ceLErM932223eu+pp/zTEwAAAAAAAAAAAAAAwJcE6BrgoosuqnYK2RZbbFH0AF0SOKmpPgG6tT3yyCMxfPjwWLFiRdZ1Q4YMib/97W9RXl6c/2xqCzFNnz49Zs2aFRtvvHFBzn/55ZcbPZilp/rTEwAAAAAAAAAAAAAAwJcaf4xWCq1evXrN1RQ19fqK6cknn8xMlVu2bFnWdYMHD4677747WrduHcWSBDO33HLLWvsphBkzZsS7776bdc1+++1X7331lF96AgAAAAAAAAAAAAAAWJsAXR4kU96qm/TWVDT1+opl/Pjxcfjhh8eSJUtqDefcf//90bZt2yi2gw46KOvzsWPHFuTcRx99NOvzvn371hqwqome8kdPAAAAAAAAAAAAAAAAaxOgy4OmPtmtqddXDC+//HIMGTIkFi5cmHXdnnvuGQ8++GBssMEG0RR87Wtfy/o8CfpVVFTk/dy77ror6/ODDz445731lD96AgAAAAAAAAAAAAAAWJsAHS3O5MmT45BDDol58+ZlXbfrrrvGI488Ep06dYqmYujQodG+ffsan8+aNavWiV319dlnn2V+DtkcddRROe+vp/zQEwAAAAAAAAAAAAAAwPoE6GhR3n333cwkrTlz5mRdt+OOO8bYsWOja9eu0ZR06NAhhg0blnXN1Vdfndczr7/++li+fHmNz3v27Bn7779/zvvrKT/0BAAAAAAAAAAAAAAAsD4BOlqMqVOnxoEHHhgzZ87Muq5v376ZSVrdu3ePpuikk07K+vyhhx6KV155JS9nLVy4sNZQ1AknnBAlJSUNOkdPDaMnAAAAAAAAAAAAAACA6gnQpVRFRcWa91UDJi01bDJjxoxMeG769OlZ1/Xu3Tsef/zx6NGjRzRVyQS9fv361fh89erVcfbZZ+flrEsvvTQ++eSTGp+3adMmzjrrrAafo6eG0RMAAAAAAAAAAAAAAED1BOhSatGiRdXeb9WqVbQ0n376aSY898EHH2Rdt8UWW2TCc8lrU3feeedlff7UU0/F//zP/zTojOeeey6uuOKKrGu++93vxiabbBL5oKfc6AkAAAAAAAAAAAAAAKBmAnQpNXfu3Grvt2/fPlqSzz//PA4++OB4++23s67bdNNNM+G5rbbaKpqDESNGxJ577llr0GnMmDE57T9lypT49re/HStXrqxxTceOHeOiiy6KfNFT/ekJAAAAAAAAAAAAAAAgOwG6lHrrrbeqvb/RRhtFS7Fw4cIYMmRIvPLKK1nXdevWLR577LHo27dvNBclJSXxhz/8IfNakxUrVsRRRx0Vf/zjH+u197PPPhsHHHBAfPzxx1nXXXjhhZngYb7oSU/F6gkAAAAAAAAAAAAAAEiv8mIXQP6tXr06nnvuubUCLsm95PNmm20WLUUyKev555+vdd3RRx+d+XklV2Po0aNHDB06tMH77LXXXvGLX/wiLrnkkhrXLFu2LE499dQYPXp0/OY3v8k6OWzatGlx+eWXx0033ZR1+lciCTmdffbZkW960lOxegIAAAAAAAAAAAAAANJJgC6FHnjggcwEpyQwVxmcq9SnT5+i1taYJk+eXKd111xzTTSmJACUjwBdIgkmPfPMM/H0009nXffwww9nru233z4GDhyYmbbXqVOnWLRoUXz00UfxwgsvZMKGyd9LbTbeeOO47bbboqysLApBT3oqVk8AAAAAAAAAAAAAAED6CNClzKuvvhpnnHHGWqG5qvr379/oNVE4SZDo3nvvjUGDBmV+97V5++23M1euunTpEo888khBJxnqSU/F6gkAAAAAAAAAAAAAAEif0mIXQG4qKipi4cKFMWPGjMwUqBtvvDGOOOKI2GuvvTLT5xLVTXTab7/9ilAthdS1a9cYO3ZsDBgwoKDnJNO/kgBTY4Qw9ZQ7PQEAAAAAAAAAAAAAAHxJgK7KNKX6XlVDalVfTz311Jz2q8/VunXr6Ny5c/Ts2TMOOOCAOPPMM+OBBx6IFStWZKbPVdZTdRLdFltsIYCSUt27d49x48bFCSecUJD999xzz3jppZcyAc3Goqf60xMAAAAAAAAAAAAAAMDaBOj+LQmc1ffK5175uqoG5qrWk9z/3ve+V+CfIsXUtm3buPnmmzNByq233jove3bs2DGuvPLKGD9+fCas2dj0VDd6AgAAAAAAAAAAAAAAqJ4AXRVJyKw+V772yeeVqG76XJcuXeJHP/pRI/wUKbahQ4fG22+/Hbfeemtmelcuttxyy7j00ktj6tSp8ZOf/GTNxMVi0VP19AQAAAAAAAAAAAAAAJBdeS3PW5xsk+Uac498qZw+94c//CE23HDDaEmSAE5L1apVqzjuuOMy10cffRR///vfY8KECfHmm2/GtGnTYv78+bF48eJo06ZNZtJXjx49Yocddoj+/fvHIYccErvuums0NXrSEwAAAAAAAAAAAAAAQH0J0KVM1alzleG53//+9zFixIii1kXx9OzZM0477bTMlRZ6ah7S2BMAAAAAAAAAAAAAANC8CNBlCaDlOmmuPnsUQmVdu+++e4waNSr23XffotYDAAAAAAAAAAAAAAAAUAwCdHUIxBVrn1xsu+22cdBBB8XRRx8dAwcOLFodAAAAAAAAAAAAAAAAAMUmQPdvF154Yb2/c/HFF2emzSWBuaqvhx12WGb6WyGVlZVF69ato2PHjtG9e/fo2bNnbL/99tG5c+eCngsAAAAAAAAAAAAAAADQXAjQNTBAV50jjjgiTjrppDxUBQAAAAAAAAAAAAAAAECuSnP+JgAAAAAAAAAAAAAAAAA0YQJ0AAAAAAAAAAAAAAAAAKSSAF0elJSUrPUKAAAAAAAAAAAAAAAAQPGVF7uA5m716tXFLgEAAAAAAAAAAAAAAACAagjQNcCqVauKXQIAAAAAAAAAAAAAAAAANSit6QEAAAAAAAAAAAAAAAAANGcCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBK5cUugC/MmTMnPv3001iyZEksXbo0c69t27bRrl272HjjjWPDDTcsdokAAAAAAAAAAAAAAAAAzYoAXSNbsWJFPPPMMzFu3Lh49dVXY/LkyfHRRx/F8uXLs36vdevW0bNnz9hll11i1113jQMOOCD22WefaNWqVaPVDgAAAAAAAAAAAAAAANCcCNA1goqKinjooYfi5ptvjocffjgzZa7S6tWr67THsmXL4r333ov3338/7r333sy99u3bx5AhQ+LEE0/MvJaWlhasBwAAAAAAAAAAAAAAAIDmRuKqwNPmrr/++ujTp0984xvfiHvuuScWL16cCc1VXiUlJfW6qn530aJFMXr06Bg2bFj07ds3brrppli5cmWx2wYAAAAAAAAAAAAAAABoEgToCuSJJ56Ifv36xQ9+8IOYNm1ajYG5SlWDcdVdlWoK1H344YdxxhlnxK677hrjxo0rUtcAAAAAAAAAAAAAAAAATYcAXZ6tWrUqfvazn8VBBx0U77777nqhuUS2gFxNavrOumG6t956K7761a/GL3/5yzrtCwAAAAAAAAAAAAAAAJBWAnR5tGTJkvj6178eV1555VoBt0S2sNy6U+VqutZVU5gu+Xz55ZfHoYceGkuXLi143wAAAAAAAAAAAAAAAABNkQBdnixatCgTnnv00UfXTJ1LVBeaqykYV92UuarfzRaoWzdIl7z/xz/+EUOGDMkE+wAAAAAAAAAAAAAAAABamvJiF5AWxx9/fIwbN26t4Ny61g3LVWrTpk307t07OnfuvOZKzJs3b801bdq0tabJVQ3RVd1r3RDd008/HSeccELceeedBekbAAAAAAAAAAAAAAAAoKkSoMuDyy67LO69994aw3Pr3k8Cct/+9rdj4MCBsdtuu8WOO+4YZWVlWc+oqKiIt956KyZNmhTPPvtsJhA3d+7cavevfF8Zorv77rtj5MiR8dOf/jTPnQMAAAAAAAAAAAAAAAA0XaXFLqC5mzJlSlx88cV1Cs/tt99+8be//S0++eSTuOmmmzKT4XbZZZdaw3OJZM3OO++cmXR3/fXXx8cff5wJ0Q0aNGitqXPrqgzRXXDBBfHee+/lqWsAAAAAAAAAAAAAAACApk+AroGSqW7Lli1bLzyXBNcqw2s9evSIv/zlL/H000/H8OHDo02bNg0+t3Xr1vGtb30rHnvssbjjjjtiiy22WDN1rlLVepIaf/aznzX4XAAAAAAAAAAAAAAAAIDmQoCuAV599dUYM2bMmqBcpcrPyXXkkUfG22+/HSNGjChYHd/+9rczZxx11FHVhugq67n//vtj8uTJBasDAAAAAAAAAAAAAAAAoCkRoGuA66+/fr17lWG15PXkk0+O0aNHR4cOHQpeS7t27eL222+PM844Y70QXW01AwAAAAAAAAAAAAAAAKSRAF2OVq5cGXfddddaQbWq4bmvfe1rcdNNNzV6Xddee218/etfXy9EV1nbHXfcERUVFY1eFwAAAAAAAAAAAAAAAEBjE6DL0Ysvvhhz5szJvF83rNaxY8e45ZZbilbbzTffHJ07d14rOFfps88+i+eff75otQEAAAAAAAAAAAAAAAA0FgG6HD3zzDPr3asM0p177rmx8cYbR7F07949zjnnnLWCc7XVDgAAAAAAAAAAAAAAAJA2AnQ5mjRp0pr3VafPlZaWxumnnx7FdsYZZ0RZWdl69SVeeeWVIlUFAAAAAAAAAAAAAAAA0HgE6HL0wQcfVDt9bs899yzq9LmqU+j22muv9abQJZ/ff//9otUFAAAAAAAAAAAAAAAA0FgE6HI0ffr09Sa7JQYMGBBNxbq1VNab1A4AAAAAAAAAAAAAAACQdgJ0OVq4cGG193v37h1NRU211FQ7AAAAAAAAAAAAAAAAQJoI0OVo8eLF1d7v2LFjNBUbbLBBtfeXLFnS6LUAAAAAAAAAAAAAAAAANDYBuhy1bt262vtLly6NpmL58uXV3m/VqlWj1wIAAAAAAAAAAAAAAADQ2ATo8jzdbebMmdFU1FRLTbUDAAAAAAAAAAAAAAAApIkAXY66detW7f3XX389moo33nij2vvdu3dv9FoAAAAAAAAAAAAAAAAAGpsAXY623nrrWL169ZrPJSUlmc9PPfVUVFRURLGtWrUqU0tSV6WkvuTzVlttVdTaAAAAAAAAAAAAAAAAABqDAF2OtttuuzXvqwbp5s+fH/fdd18U25gxY2Lu3Lnr1ZfYYYcdilQVAAAAAAAAAAAAAAAAQOMRoMvRvvvuW+39JKx2ySWXRLFdeumlNT7bZ599GrUWAAAAAAAAAAAAAAAAgGIQoMvR/vvvH2VlZZn3JSUlmeBc8pqYNGlSjBo1qmi1XX/99fHiiy+uV1eitLQ0UzsAAAAAAAAAAAAAAABA2gnQ5ahbt24xaNCgTECtqsrQ2nnnnRdPPPFEo9f17LPPxjnnnLNWaC5RGaRLak5qBwAAAAAAAAAAAAAAAEg7AboGOOGEE9b6XBmmS4Jqy5cvj2HDhsXDDz/caPU8/vjjMXTo0Fi6dOla9VT13e9+t9HqAQAAAAAAAAAAAAAAACgmAboGGDFiRPTu3TvzvnLiW9UQ3aJFi+Lwww/PTKNL3hdKEpj71a9+FUOGDIn58+evmYJXta5EUusxxxxTsDoAAAAAAAAAAAAAAAAAmhIBugYoKyuLiy66aL1Jb1XDaxUVFTFy5MjYbrvt4i9/+UusXLkyb+evWrUqbr/99th+++3j0ksvjRUrVqwVmKtaT3L/4osvjtJSv3IAAAAAAAAAAAAAAACgZZCmaqATTjghBg8evCakVl2ILnk/Y8aMzNrNNtssfvSjH8X48eMz4br6Sr7zwgsvxI9//OPo0aNHfOc734l//vOfa52/7tnJ64EHHhjHHXdc3voGAAAAAAAAAAAAAAAAaOrKi11AGtx8880xYMCAmDVr1prQWqIyvFY12DZ79uy45pprMlfr1q1jp512iv79+0efPn2ic+fO0alTp8yVmD9//prr/fffj0mTJsXrr78ey5cvX7NfoqbgXqVNN900UyMAAAAAAAAAAAAAAABASyJAlwebb755jB49Og4++OBYsmTJeiG6xLpBusSyZcti4sSJmWBcXVR+r1J1wbmq95N7G2ywQdxzzz2ZaXUAAAAAAAAAAAAAAAAALUlpsQtIi3322ScefPDBTGBt3XBbZZht3TBd1aBbXa5s361U9X7Hjh3j73//e+y1116N9FMAAAAAAAAAAAAAAAAAaDoE6PLogAMOiKeeeip69eqVCbBVDbpVyhaIq8tV3R6Vqj7feuutY9y4cbHffvs1Wv8AAAAAAAAAAAAAAAAATYkAXZ7ttttuMXHixDjmmGNqnBpXqa6T56qbRFep6t6Vz4877rh4+eWXo1+/fo3aOwAAAAAAAAAAAAAAAEBTIkBXAF27do3bbrstHnnkkejfv3+NE+dyVdNEugEDBsRjjz0Wt9xyS3Tu3Dlv/QAAAAAAAAAAAAAAAAA0RwJ0BfS1r30tMwnugQceiKFDh0ZZWVmNYbr6XInKfcrLy2PYsGHx8MMPx4svvhiDBg0qctcAAAAAAAAAAAAAAAAATUN5sQtoCQ499NDMNXv27EyYbuzYsTFu3LiYPn16Tvv17Nkz9t9//0xALwnmbbTRRnmvGQAAAAAAAAAAAAAAAKC5E6BrRN26dYvvfve7mSsxd+7ceP3112PatGkxY8aMTMBuyZIlsXTp0szztm3bRrt27aJ79+7Ro0eP6N27d+y8887RpUuXIncCAAAAAAAAAAAAAAAA0PQJ0BVR165dY+DAgZkLAAAAAAAAAAAAAAAAgPwqzfN+AAAAAAAAAAAAAAAAANAkCNABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKlUXuwCmrPBgwdXe/9nP/tZDBkyJIrpoYceipEjR653v6SkJB577LGi1AQAAAAAAAAAAAAAAADQmAToGuDJJ5/MBNIqrV69OvP5uOOOi2L7+OOPa6wPAAAAAAAAAAAAAAAAoCUoLXYBaZAE05qypl4fAAAAAAAAAAAAAAAAQCEI0OVBU5/q1tTrAwAAAAAAAAAAAAAAACgEAboWMOGtqdcHAAAAAAAAAAAAAAAAUAgCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQpdSKFSvWvC8pKVnzvrTUrxwAAAAAAAAAAAAAAABoGaSpUmrhwoXV3m/dunWj1wIAAAAAAAAAAAAAAABQDAJ0KTVz5sxq73fs2LHRawEAAAAAAAAAAAAAAAAoBgG6lHrjjTfW+rx69erMa7du3YpUEQAAAAAAAAAAAAAAAEDjEqBLocWLF8e4ceOipKRkrfvJ5y222KJodQEAAAAAAAAAAAAAAAA0JgG6FLruuuti0aJFa02eq7TtttsWqSoAAAAAAAAAAAAAAACAxlXeyOdRQKtWrcqE5371q1+tN32u0oABAxq9LgAAAAAAAAAAAAAAAIBiEKD7t6effjpve73zzjt53a86K1asiCVLlsT8+fPjgw8+iDfffDP+8Y9/xNy5czNT55IA3brT5xJf/epXC1oXAAAAAAAAAAAAAAAAQFMhQFclWFbT1LZsKkNqVV9HjhyZuRpbZQ1Vw3OV75PX/v37R69evRq9LgAAAAAAAAAAAAAAAIBiEKBbR3VT24qxRy5qCwB+//vfb7RaAAAAAAAAAAAAAAAAAIpNgG4d9ZlCV1NQLpdJdvlStabKOpLX7bbbLk488cSi1QUAAAAAAAAAAAAAAADQ2AToUjSBrqrK8FxSywYbbBC33XZblJf7dQMAAAAAAAAAAAAAAAAtR2mxCyB/gbmqV2V4bpNNNolHHnkk+vfvX+wSAQAAAAAAAAAAAAAAABqVkWTrqAyfNWTSXH32yKeq9XTo0CFOO+20+NWvfhVdunQpSj0AAAAAAAAAAAAAAAAAxSRAV4dAXLH2qY927drFtttuG3vvvXccdNBBceihh0b79u0bvQ4AAAAAAAAAAAAAAACApkKA7t+eeOKJeofkBg8enJk2l7yv+vrTn/40E2ArpLKysmjdunV07NgxunfvHt26dSvoeQAAAAAAAAAAAAAAAADNjQDdvx1wwAF522u77bbL634AAAAAAAAAAAAAAAAA1F9pDt8BAAAAAAAAAAAAAAAAgCZPgC4PSkpKil0CAAAAAAAAAAAAAAAAAOsoX/cG9bd69epilwAAAAAAAAAAAAAAAADAOgToGmD//fevdvpcjx49ilIPAAAAAAAAAAAAAAAAAF8SoGuAJ598stglAAAAAAAAAAAAAAAAAFCD0poeAAAAAAAAAAAAAAAAAEBzJkAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBK5cUuAKAhVq5cGe+//35MnTo1FixYEAsXLoy2bdtGp06dokePHrHddttF+/btoznREwAAAAAAAAAAAAAAQH4I0AHNzuTJk+Puu++Ohx56KF555ZVYvnx5jWtLSkqib9++8fWvfz2GDRsWgwcPztxravTUPHoCAAAAAAAAAAAAAACaFwE6WEcyIeull15ac7388svx+eefZ/3O6tWro7H17t07pk2bFsVy0003xSmnnNKoZz7yyCNx2WWXxZNPPlnn7yS/m3fffTdzXXXVVbHtttvGT37ykzj11FOjrKwsik1PzaMnAAAAAAAAAAAAAACgeRKgo0WbPn36emG52bNnF7ss1vGvf/0rzjrrrLjnnnsavFcS0DrzzDPj+uuvjxtuuCH23nvvKAY9NY+eAAAAAAAAAAAAAACA5k2AjhZj5syZMWHChLUCc8k9mrZx48bFt7/97Zg1a1Ze93311Vdj4MCBMWrUqExQqzHpqXn0BAAAAAAAAAAAAAAANH8CdLQYhxxySCaMQ/Nx3333xVFHHRUrVqwoyP7Jvt///vdj2rRpcdlll0Vj0FPz6AkAAAAAAAAAAAAAAEiH0mIXAFCdsWPHxtFHH12wUFZVl19+efz2t78t+Dl6ah49AQAAAAAAAAAAAAAA6SFABzQ5U6dOjeHDh8eyZctqXbvLLrvEFVdcEePHj4/Zs2dnglyff/55TJ48OW666aY46KCDoqSkpNZ9LrjggswktULRU/PoCQAAAAAAAAAAAAAASJfyYhcA5N8+++wT3/ve9wp6xsCBAwuy78qVKzMTzZJwVTabbLJJXH311XHUUUet96xz586Za+edd45TTjklJkyYEGeccUZMnDgx657Jz+yVV16JXr16RT7pqXn0BAAAAAAAAAAAAAAApI8AHWTRu3fv2HbbbeMf//hHNCd9+/bNBJKaoz/84Q/x4osvZl2z6667xkMPPRSbbbZZnfbcc88947nnnssEr/7617/WuG7u3Llx9tlnx9133x35pKfm0RMAAAAAAAAAAAAAAJA+pcUuAJqKnj17xpFHHhm/+93v4uGHH47Zs2fHhx9+GDfccEOxS2sxPv3007jooouyrunTp0+MHTu2zqGsSm3atIlbb701jjjiiKzr7rnnnnj00UcjX/TUPHoCAAAAAAAAAAAAAADSyQQ6WqQk1DNgwIDMtccee2QmX3Xv3r3YZbV4I0eOjHnz5tX4vHXr1nHHHXfk/LsqKyuLm2++Ofr37x9Tp06tcd0FF1wQBx10UOSDnppHTwAAAAAAAAAAAAAAQDqZQEeLcdZZZ8WYMWPi448/jn/9619x3333xa9//es49NBDheeagPnz59c67e/ss8+O3XbbrUHndO7cOUaNGpV1zfjx42PcuHHRUHpqHj0BAAAAAAAAAAAAAADpJUBHi3HyySfHYYcdFptuummxS6EaycSxbFPNunTpEueff35ezho2bFgMHDgw65qrrrqqwefoqXn0BAAAAAAAAAAAAAAApJcAHdAk3HrrrVmfn3baadGpU6e8nXfuuedmfZ5MK8wWFKsLPTWPngAAAAAAAAAAAAAAgPQSoAOKbsqUKTFhwoSsa0499dS8nnn44YdHjx49any+bNmyGD16dM7766l59AQAAAAAAAAAAAAAAKSbAB1QdMkUsWz22GOP6NOnT17PLC0tjeHDhzeoroZ8V09NoycAAAAAAAAAAAAAACDdBOiAonv00UezPh86dGhBzq1t3yeeeCIqKipy2ltPzaMnAAAAAAAAAAAAAAAg3QTogKJauXJlPP3001nXHHTQQQU5e+DAgdG2bdsan8+bNy8mTJhQ73311Dx6AgAAAAAAAAAAAAAA0k+ADiiqN954IxYtWlTj81atWsVee+1VkLOTUNZuu+2WdU0uwSw9NY+eAAAAAAAAAAAAAACA9BOgA4pq4sSJWZ/vuOOO0aZNm4KdP2DAgKzPJ02aVO899dQ8egIAAAAAAAAAAAAAANJPgA4oqldeeSXr8379+hX0/Nr2zyWYpafm0RMAAAAAAAAAAAAAAJB+5cUuACisioqK+PDDD+Of//xnfPrpp7FkyZIoKyuL9u3bR6dOnWKLLbaInj17RocOHYpS37vvvpv1ed++fQt6fp8+fbI+nzJlSr331FPz6AkAAAAAAAAAAAAAAEg/ATpIoSQsd+GFF8Zjjz2Wmcy1ePHiWr+z9dZbxx577BGDBw+OQw89NHr16tUotSbhvoYEpxqqtv0XLVqUCR527969znvqqXn0BAAAAAAAAAAAAAAApJ8AHaTQE088kbnq44MPPshcd955Z+bzwIED4/TTT4+jjz46yssL8z8Vq1evjmnTpmVds9lmm0UhbbrpplFaWhqrVq3KGh6razBLT82jJwAAAAAAAAAAAAAAoGUoLXYBQNM0bty4OO6442KHHXaI22+/vSBnzJ07N5YuXVprcKqQknDgRhttlHXNjBkz6ryfngoj3z0BAAAAAAAAAAAAAAAtgwAdkNV7770XxxxzTBx++OHxySef5HXvOXPm1Lpm4403jkLbZJNNGlxnfdbqqfg9AQAAAAAAAAAAAAAALUN5sQsAmocHHngg9thjj7j//vszr/nw2Wef1bqmU6dOeTmrIWfUpc76rNVT8XtqDNdcc01ce+21BT/n/fffL/gZAAAAAAAAAAAAAADQXAnQAXU2Y8aM2H///ePBBx+Mr371qw3eb+7cuVmft2vXLsrKyqLQOnbsmLdglp6aR0+N4dNPP40333yz2GUAAAAAAAAAAAAAAECLJkAHKbPNNtvE3nvvHbvsskvsvPPOsdVWW0Xnzp0zVxJ0SsJQc+bMyVwvvfRSPPXUUzFu3LiYPXt2nfZfvHhxHH744fH444/Hnnvu2aBaly5dmvX5BhtsEI2hQ4cODaqzPmv11DR6AgAAAAAAAAAAAAAAWgYBOkiBZCrcEUccEUOHDo3tttsu69ru3btnrsS+++4bP/7xj6OioiLuvPPOuOKKK2LSpEm1nrdw4cL41re+FRMnToxu3brlXPfy5cuzPi8vb5z/iartnNrqrM9aPTWNngAAAAAAAAAAAAAAgJahtNgFALnp2rVrJvz29ttvZ6bInXPOObWG52pSVlYWxxxzTCYQd9ttt0XHjh1r/c5HH30Up512WjREGoNZeiocAToAAAAAAAAAAAAAAKC+BOigmZowYUL87//+b86huZqMGDEiXn755ejXr1+ta++55574+9//nvNZq1atqjXY1xhqOyeZ0FdXemoePQEAAAAAAAAAAAAAAC1D44wNAvKukFO/+vbtm5lq99WvfjVeffXVrGvPP//8GDJkSEF6WLlyZTSG2s5p1apVnffSU/PoqTF07949dtxxx4Kf8/7778eyZcsKfg4AAAAAAAAAAAAAADRHAnRAtbp06RL3339/7L777jFnzpwa102aNCkee+yxOPDAA+t9RuvWrZtEMGvFihUNqrM+a/XUNHpqDD/4wQ8yV6HttNNO8eabbxb8HAAAAAAAAAAAAAAAaI5Ki10A0HT16tUrrrzyylrX3XLLLTntX9vEsOXLl0dzC2bpqXCaW4AOAAAAAAAAAAAAAAAoPgE6IKvjjz8++vXrl3XNfffdV2u4qTodOnTI+nzhwoXRGBYsWNCgOuuzVk9NoycAAAAAAAAAAAAAAKBlEKADsiopKYmzzz4765p58+bFpEmT6r33hhtumPV5EspbunRpFNr8+fMbVGd91uqpafQEAAAAAAAAAAAAAAC0DAJ0QK2OPPLIaNWqVdY148ePr/e+G220Ua1rPv/88yi02s6oS531Waun4vcEAAAAAAAAAAAAAAC0DAJ0QK26dOkS/fv3z7rm7bffrve+3bp1q3XNJ598EoVW2xn1CWbpqXn0BAAAAAAAAAAAAAAAtAwCdECd7L777lmfT506td57tm/fvtbQ08yZM6OQFi9eHAsWLMi6Zsstt6zzfnpqHj0BAAAAAAAAAAAAAAAtgwAdUCe9e/fO+nzWrFkF2XfatGlRSHXZv7Ya67teT02jJwAAAAAAAAAAAAAAIP0E6IA66dy5c60TwnKx1VZbZX0+ZcqUKKT33nsv6/NNNtkkM4GtPvTUPHoCAAAAAAAAAAAAAADST4AOqJPWrVtnfb5ixYqc9t1pp52yPn/nnXeikGrbv7b6cvmOnppGTwAAAAAAAAAAAAAA/H/27j1I6+o+/PgHlruAqAFEXRHiqmEV5ZpqJcYU8EIk00RMnGmtNcGqqSlOp7GmjbEmEy+TMVXEmDGtgzppLqh4icZAImq8crXKykUiqBFEBUQkLBf3N/v4S83F/T777D7PPvs9vF4zO0lzzp5zPnYms3/kPV9In4AOaJXf/e53meu9e/du07mjR4/OXF+6dGlU0pIlSzLXR40aVfKZZsrHTAAAAAAAAAAAAAAAQPoEdECrbNiwIXO9b9++bTq3WJj16quvxsaNG6NSFi9e3OGxmZk6x0wAAAAAAAAAAAAAAED6BHRAq7z44ouZ6wcffHCbzj3kkENi6NChmXsWLFgQlfDaa6/FqlWrMveceOKJJZ9rpnzMBAAAAAAAAAAAAAAApE9AB7TK008/nbk+bNiwNp89ceLEzPV58+ZFJcyfPz9zva6urmg01hIz5WMmAAAAAAAAAAAAAAAgbQI6oKiGhoZYu3Zt5p6RI0e2+fxJkyZlrt97772xZ8+eKLc5c+Zkrk+ePLnNZ5spHzMBAAAAAAAAAAAAAABpE9ABRd12221F95xwwgltPn/KlCnRp0+fFtc3btxY9Ctkpdq0aVM89NBDmXumTZvW5vPNlI+ZAAAAAAAAAAAAAACAtAnogEybN2+O73//+5l7PvrRjxZ+2qpv374xderUzD0zZ86Mcrr55ptj586dLa7X1tbGJz7xiTafb6Z8zAQAAAAAAAAAAAAAAKRNQAdkuuyyy2LLli2Ze84666x233Peeedlrj/wwAOxbNmyKIdt27YVDb3OOeec6NKlS7vuMVM+ZgIAAAAAAAAAAAAAANIloANaNGfOnKJfn6upqYkvfvGL7b5r0qRJMXLkyBbXm5qaYsaMGVEOV111VWzYsKHF9Z49e8bFF1/c7nvMlI+ZAAAAAAAAAAAAAACAdAnoIEcaGhpi8+bNHXLXvHnz4m//9m+L7ps2bVp89KMfLcudl156aeb6I488Et/97nfbdccTTzwR1157beaec889NwYPHhzlYKZ8zAQAAAAAAAAAAAAAAKRJQAc58otf/CKGDx8e3/zmN+Ott96qyB3NXxC7+uqr4/TTT48dO3Zk7u3du3d8+9vfLtvdZ599dowbN65ovHXfffe16fzVq1fHmWeeGbt3725xT79+/eKKK66IcjFTPmYCAAAAAAAAAAAAAADSJKCDnNmyZUtcfvnlceihh8b06dPj8ccfL9vZy5Yti9NOOy0uu+yyzHjp95oDpmHDhpXt/i5dusSNN95Y+NeW7Nq1q/DVux/84Aclnd38z+mkk06K9evXZ+77xje+EQceeGCUi5nyMRMAAAAAAAAAAAAAAJCmbtV+AHSkRx99NFatWlXS77TmS2+lRkLNmiOhurq6aKvt27cX7m3+qa2tjSlTpsSkSZPihBNOKCks2rx5cyxYsCC+973vxbx581r9e1OnTo1/+Zd/iXIbP358IeDL+rJdY2NjIR68884748orr8z8Gtq6devimmuuiVtuuaVoFNj8/5MZM2ZEuZkpHzMBAAAAAAAAAAAAAADpEdCxV/nv//7vmD17dtnPbY6ESnXrrbe2K6D7Q6+88krcfPPNhZ9mQ4YMiaOOOiqGDx9eiOn233//6NWrV9TU1BSCuU2bNsWbb74ZixYtiueffz6amppKuu/444+PO+64I/MLZO3RHFv9+te/LgSPWX7+858XfppnnTBhQuGfZ//+/ePdd98t/DN5+umn46mnnmrVfIMGDYof/vCHhX9GlWCmfMwEAAAAAAAAAAAAAACkRUAHCVq/fn3h5+GHHy772Z/85Cfj3nvvjX79+kWlNMdRc+fOjZNPPjmeffbZovtXrFhR+GmrAQMGxEMPPRQHHXRQVIqZ8jETAAAAAAAAAAAAAACQlq7VfgCQH1/5yldi3rx5FY3nfm+//fYr3DV27NiK3tP8RbPmKOu4446LSjNTPmYCAAAAAAAAAAAAAADSIaADijriiCPiV7/6VVx//fXRrVvHfbhy4MCB8dhjj8U555xTkfPHjRsXixYtivHjx0dHMVM+ZgIAAAAAAAAAAAAAANIgoIMcOeqoo2LEiBEddl9dXV3813/9Vzz//PNx8sknRzX06tUrZs+eHffff38MHz68LGc2f0HvuuuuiyeffDJqa2ujo5kpHzMBAAAAAAAAAAAAAAD5J6CDHDn11FNj+fLl8frrr8ePfvSjuPDCC2Ps2LGFeKlcmkOl6dOnxyOPPBIrV66M8847L7p37x7VNmXKlFixYkXcfvvthS+StcXQoUPjqquuirVr18Yll1wSNTU1UU1mysdMAAAAAAAAAAAAAABAfnVpampqqvYjgPbZs2dPvPDCC/Hss8/Gb37zm3jllVcKP6+++mq8/fbbsX379sJPY2NjdOvWrRDcNX/da8iQIXHwwQfHkUceGcccc0wheGr+93nQPN+DDz4YCxcujIaGhli3bl1s3bq1MGfPnj3/b76Pfexjcdxxx8Upp5wSxx57bHRmZsrHTJ1NfX194Z/tn2r+WmVzcAupOexff1btJwBQBmuvnlLtJwBQBv4+B0iDv88B0uDvc4A0+PscIA3+PgdIg7/PSVX9Xvq/P+9W7QcA7df8ha6jjz668LO3aP5S3vnnn1/4SYWZAAAAAAAAAAAAAAAAyqtrmc8DAAAAAAAAAAAAAAAAgE5BQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkgR0AAAAAAAAAAAAAAAAACRJQAcAAAAAAAAAAAAAAABAkrpV+wFAx9m9e3esWbMm1q5dG++8805s27YtevXqFf37948hQ4bEkUceGX369Ik8MVM+pDgTAAAAAAAAAAAAAADQ+QnoIHHPPfdc3HXXXfHAAw/EsmXLYufOnS3u7dKlS9TV1cWpp54aU6dOjU996lOF/6yzMZOZAAAAAAAAAAAAAAAAWkNAB3+i+QtZixYt+r+fxYsXx5YtWzJ/p6mpKTqbhx56KK6++upYsGBBq3+neY5Vq1YVfm644YY44ogj4pJLLonp06dHTU1NVJuZ3mcmAAAAAAAAAAAAAACA1unayn2QpFdffTXmzp0b//7v/1748tXAgQNj2LBhMW3atLjmmmvil7/8ZdF4rrP57W9/G5/97GcL85QSMH2Y5pjpwgsvjDFjxsTTTz8d1WKmbGYCAAAAAAAAAAAAAAD4cL5Ax17j9ddfj4ULF/7R1+Wa/7OUPPbYY3HmmWfGxo0by3rus88+GxMmTIjrr7++EDV1JDO1npkAAAAAAAAAAAAAAAD+mICOvcYpp5xSiHFSdc899xS+nLdr166KnN987kUXXRTr1q2Lq6++OjqCmUpnJgAAAAAAAAAAAAAAgA90/YN/D+TUvHnz4vOf/3zFAqY/dM0118Q3v/nNit9jpvYxEwAAAAAAAAAAAAAAgIAOcm/t2rVx1llnRWNjY9G9xxxzTFx77bXx5JNPxptvvlmInrZs2RLPPfdc3HLLLTFx4sTo0qVL0XMuv/zywlfHKsVMZqrWTAAAAAAAAAAAAAAAQFq6VfsBQNvt3r278PWv5hApy+DBg2PmzJkxbdq0P1vbd999Cz9HH310fOlLX4qFCxfGBRdcEEuWLMk88+///u9j2bJlceihh0Y5mclM1ZoJAAAAAAAAAAAAAABIjy/QQYbDDjssJk+eHJ3VjTfeGM8880zmnmOPPbYQJH1YwPRhxo0bF0888UScffbZmfs2b94cM2bMiHIzk5mqNRMAAAAAAAAAAAAAAJAeAR38f7W1tfHXf/3X8a1vfSt+/vOfx5tvvhkvvfRSfP/734/O6I033ogrrrgic8/hhx8e8+bNi4MOOqiks3v27Bm33357fOYzn8ncd/fdd8f8+fOjXMxkpmrNBAAAAAAAAAAAAAAApElAx16pOeqZOnVqXHnllfGzn/0sNm7cGC+//HLcdddd8W//9m9xyimnxAEHHBCd2Xe+8514++23W1zv0aNH/OQnP4mBAwe26fyampqYPXt24St8WS6//PIoFzOVzkwAAAAAAAAAAAAAAAAtE9Cx17j44ovjvvvui/Xr18dvf/vbuOeee+LrX/96nH766W0Ofapl69atRb+MN2PGjBg1alS77tl3333j+uuvz9zz5JNPxmOPPRbtZaa2MxMAAAAAAAAAAAAAAMCHE9Cx1/jiF78Yn/70p+PAAw+MvGv+OlfWF8AGDBhQ+JJeOTR/qW/ChAmZe2644YZ232Om9jETAAAAAAAAAAAAAADAnxPQQQ7dfvvtmevnn39+9O/fv2z3/fM//3PmevOX/bKiqtYwU/uZCQAAAAAAAAAAAAAA4I8J6CBnVq9eHQsXLszcM3369LLeecYZZ8SQIUNaXG9sbIw777yzzeebqTzMBAAAAAAAAAAAAAAA8McEdJAzzV/cyjJmzJg4/PDDy3pn165d46yzzmrXu9rzu2ZqHTMBAAAAAAAAAAAAAAD8MQEd5Mz8+fMz16dMmVKRe4ud+/DDD8eePXvadLaZysdMAAAAAAAAAAAAAAAAHxDQQY7s3r07Hn300cw9EydOrMjdEyZMiF69erW4/vbbb8fChQtLPtdM5WUmAAAAAAAAAAAAAACADwjoIEeWL18e7777bovr3bt3j/Hjx1fk7uaAadSoUZl72hIxmam8zAQAAAAAAAAAAAAAAPABAR3kyJIlSzLXR4wYET179qzY/WPHjs1cX7p0aclnmqn8zAQAAAAAAAAAAAAAAPA+AR3kyLJlyzLXR44cWdH7i53flojJTOVnJgAAAAAAAAAAAAAAgPcJ6CBHVq1albleV1dX0fsPP/zwzPXVq1eXfKaZys9MAAAAAAAAAAAAAAAA7xPQQY689NJL7YqM2qvY+e+++2688cYbJZ1ppvIzEwAAAAAAAAAAAAAAwPsEdJATTU1NsW7dusw9Bx10UEXfcOCBB0bXrl3bFVr9ITNVhpkAAAAAAAAAAAAAAADeJ6CDnNi8eXPs2LGjaGRUSd26dYsDDjggc89rr73W6vPMVBlmAgAAAAAAAAAAAAAAeJ+ADnLirbfeKrpn0KBBFX/H4MGD2/3OUvaaqW3MBAAAAAAAAAAAAAAAENGt2g8AWmfTpk1F9/Tv37/i7yh2R2veWcpeM7WNmapv1qxZcdNNN1X8njVr1lT8DgAAAAAAAAAAAAAAyCsBHeTE5s2bM9d79+4dNTU1FX9Hv379yhYxmalyzFR9b7zxRjQ0NFT7GQAAAAAAAAAAAAAAsFfrWu0HAK2zY8eOzPV99tmnQ97Rt2/fdr2zlL1majszAQAAAAAAAAAAAAAACOggN3bu3Jm53q1bx3xQstg9xd5Zyl4ztZ2ZAAAAAAAAAAAAAAAABHSQGylGTGaqHDMBAAAAAAAAAAAAAAAI6CA33nvvvcz1mpqaDnlHsXv27NnT6rPMVDlmAgAAAAAAAAAAAAAAiOiYzwYBFf/61u7duzvkHcXu6d69e6vPMlPlmKn6Bg4cGCNGjKj4PWvWrInGxsaK3wMAAAAAAAAAAAAAAHkkoIOc6NGjR6eImHbt2tWud5ay10xtZ6bq+/KXv1z4qbT6+vpoaGio+D0AAAAAAAAAAAAAAJBHXav9AKB1in1da+fOnbmLmMxUOWYCAAAAAAAAAAAAAAAQ0EFu9O3bN3N927ZtHfKOd955p13vLGWvmdrOTAAAAAAAAAAAAAAAAAI6yI3999+/6Ne5duzYUfF3bN26tV3vLGWvmdrOTAAAAAAAAAAAAAAAAAI6yI0DDjig6J4tW7ZU/B3F7mjNO0vZa6a2MRMAAAAAAAAAAAAAAICADnLjIx/5SNE9GzZsqPg7it1RSsRkpsoxEwAAAAAAAAAAAAAAgIAOcqNPnz5FA6HXX3+9om/Yvn17vPPOO5l7hg4d2urzzFQZZgIAAAAAAAAAAAAAAHifgA5y5LDDDstcX7duXUXvb835xd5Y6n4zlc5MAAAAAAAAAAAAAAAA7xPQQY4MGzYsc3316tUVvf/FF1/MXB88eHDha2WlMFP5mQkAAAAAAAAAAAAAAOB9AjrIkfr6+sz1lStXVvT+YucXe19bfsdMpTMTAAAAAAAAAAAAAADA+wR0kCOjR4/OXF+6dGlF71+yZEnm+qhRo0o+00zlZyYAAAAAAAAAAAAAAID3CeggR4pFTK+++mps3LixYvcvXry4w8MsM5XOTAAAAAAAAAAAAAAAAO8T0EGOHHLIITF06NDMPQsWLKjI3a+99lqsWrUqc8+JJ55Y8rlmKi8zAQAAAAAAAAAAAAAAfEBABzkzceLEzPV58+ZV5N758+dnrtfV1RUNrFpipvIxEwAAAAAAAAAAAAAAwAcEdJAzkyZNyly/9957Y8+ePWW/d86cOZnrkydPbvPZZiofMwEAAAAAAAAAAAAAAHxAQAc5M2XKlOjTp0+L6xs3biz6xa5Sbdq0KR566KHMPdOmTWvz+WYqDzMBAAAAAAAAAAAAAAD8MQEd5Ezfvn1j6tSpmXtmzpxZ1jtvvvnm2LlzZ4vrtbW18YlPfKLN55upPMwEAAAAAAAAAAAAAADwxwR0kEPnnXde5voDDzwQy5YtK8td27ZtKxpFnXPOOdGlS5d23WOm9jETAAAAAAAAAAAAAADAnxPQQQ5NmjQpRo4c2eJ6U1NTzJgxoyx3XXXVVbFhw4YW13v27BkXX3xxu+8xU/uYCQAAAAAAAAAAAAAA4M8J6CCnLr300sz1Rx55JL773e+2644nnngirr322sw95557bgwePDjKwUxtYyYAAAAAAAAAAAAAAIAPJ6CDnDr77LNj3LhxRUOn++67r03nr169Os4888zYvXt3i3v69esXV1xxRZSLmUpnJgAAAAAAAAAAAAAAgJYJ6CCnunTpEjfeeGPhX1uya9eumDZtWvzgBz8o6ezHH388TjrppFi/fn3mvm984xtx4IEHRrmYyUzVmgkAAAAAAAAAAAAAAEhTt2o/ADrSo48+GqtWrSrpd956662ie0qNhJo1R0J1dXXRHuPHj4/LLrssvv3tb7e4p7GxMaZPnx533nlnXHnllZlfDlu3bl1cc801ccstt2R+/ev3758xY0aUm5nMVK2ZAAAAAAAAAAAAAACA9HRpampqqvYjoKOce+65MXv27Go/o+DWW28tvKe99uzZE5/61KcKcWBrHHXUUTFhwoRCvNe/f/94991345VXXomnn346nnrqqWjNfyUMGjQoli5dGgcddFBUgpnMVK2Z8qi+vj4aGhr+7D8fMWJELF++vCpvgko67F9/Vu0nAFAGa6+eUu0nAFAG/j4HSIO/zwHS4O9zgDT4+xwgDf4+B0iDv89JVf1e+r8/9wU6yLmampqYO3dunHzyyfHss88W3b9ixYrCT1sNGDAgHnrooYoGTGYyU7VmAgAAAAAAAAAAAAAA0tK12g8A2m+//faLefPmxdixYyt6T/PXv5oDpuOOOy4qzUxtZyYAAAAAAAAAAAAAAID3CeggEQMHDozHHnsszjnnnIqcP27cuFi0aFGMHz8+OoqZSmcmAAAAAAAAAAAAAACADwjoICG9evWK2bNnx/333x/Dhw8vy5n9+vWL6667Lp588smora2Njmam1jETAAAAAAAAAAAAAADAnxPQQYKmTJkSK1asiNtvv73w9a62GDp0aFx11VWxdu3auOSSS6KmpiaqyUwfzkwAAAAAAAAAAAAAAAAt69LU1NSUsQ4k4JVXXokHH3wwFi5cGA0NDbFu3brYunVrbN++PXr27Fn40teQIUPiYx/7WBx33HFxyimnxLHHHhudmZnMxPvq6+sL/2z/1IgRI2L58uVVeRNU0mH/+rNqPwGAMlh79ZRqPwGAMvD3OUAa/H0OkAZ/nwOkwd/nAGnw9zlAGvx9Tqrq99L//Xm3aj8AqLza2to4//zzCz+pMFM+pDgTAAAAAAAAAAAAAACQH12r/QAAAAAAAAAAAAAAAAAAqAQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkCQBHQAAAAAAAAAAAAAAAABJEtABAAAAAAAAAAAAAAAAkKRu1X4AQHs0NjbGqlWr4tVXX4133nkntm/fHn369Il+/frFIYccEkceeWT06NEj8sRMAAAAAAAAAAAAAAAA5SGgA3Lnqaeeirlz58aDDz4Yy5cvjz179rS4t6amJurr6+P000+Pz3zmM/EXf/EX0RmZKR8zAQAAAAAAAAAAAAAA+dK12g8A2q5Lly5V/Zk/f36HzvujH/0oxowZE8cff3xcc8018b//+7+ZUVaz5vXmfVdffXXh98aOHRs//vGPo7MwUz5mAgAAAAAAAAAAAAAA8klAB3R6K1asiJNOOinOPvvsWLJkSbvOWrx4cXzhC1+Ik08+OVauXBnVYqZ8zAQAAAAAAAAAAAAAAOSbgA7o1O66664YN25cPProo2U9d8GCBYWvnN19993R0cyUj5kAAAAAAAAAAAAAAID8E9ABndasWbPizDPPjG3btlXk/OZzP/e5z8VNN90UHcVM+ZgJAAAAAAAAAAAAAABIg4AO6JRmz54dF198cTQ1NVX0nubz//Ef/zFuu+22qDQz5WMmAAAAAAAAAAAAAAAgHQI6oNN55plnYvr06a2Ksk444YS48cYbY8mSJbFp06bYtWtX4V8XLVoUN9xwQ3z84x8vekbzPc33LVy4MCrFTPmYCQAAAAAAAAAAAAAASEu3aj8AqIwzzjgjpk6dWtE7RowYUfYzt27dGl/4whcKgVWWurq6+N73vhd/9Vd/9Wdr++23X4wZM6bw0/x1tF/84hdx0UUXxZo1a1o8b+fOnfH5z38+li1bFv37949yMlM+ZgIAAAAAAAAAAAAAANIjoINEjR49Or70pS9F3lx++eXx0ksvZe6ZOHFizJkzJ/bdd99WnTl58uTCl84++9nPxsMPP9zivuZ7r7jiirjuuuuinMyUj5kAAAAAAAAAAAAAAID0dK32AwB+r6GhIWbNmpW55/jjj4977rmn1VHW7w0YMCDuu+++GD9+fOa+mTNnxgsvvBDlYqZ8zAQAAAAAAAAAAAAAAKRJQAd0Gv/xH/8Ru3fvbnF9//33jx//+MfRp0+fNp2/zz77xE9+8pNCpNWS5vuvvPLKKBcz5WMmAAAAAAAAAAAAAAAgTQI6oFP4zW9+E3feeWfmnm9961tRW1vbrnuGDh1aCMCy/PSnP421a9dGe5kpHzMBAAAAAAAAAAAAAADpEtABncKsWbNiz549La7X1dXF+eefX5a7Lrroohg+fHiL683vaH5Pe5kpHzMBAAAAAAAAAAAAAADpEtABVdccQv3P//xP5p5LLrkkampqynJft27d4itf+Urmnh/+8Ifx3nvvtfkOM+VjJgAAAAAAAAAAAAAAIG0COqDqfvWrX8X69etbXO/Vq1f8zd/8TVnv/Lu/+7vo0aNHi+uvvfZaLFiwoM3nmykfMwEAAAAAAAAAAAAAAGkT0AFVd99992WuT5kyJfr161fWOwcMGBCnnXZau97Vnt81U+eYCQAAAAAAAAAAAAAASJuADqi6+fPnFw2zKqHYufPmzWvz2WbKx0wAAAAAAAAAAAAAAEDaBHRAVa1fvz5eeOGFzD0TJ06syN2TJk3KXF++fHls2LCh5HPNlI+ZAAAAAAAAAAAAAACA9AnogKp65plnMtdra2sLP5Vw2GGHxZAhQzL3LFy4sORzzZSPmQAAAAAAAAAAAAAAgPQJ6ICqWrJkSeb66NGjK3r/2LFjM9eXLl1a8plmysdMAAAAAAAAAAAAAABA+gR0QFUtW7Ysc33kyJEVvb/Y+W0Js8yUj5kAAAAAAAAAAAAAAID0dav2A4DK27VrV6xZsyZefvnl2LRpU+zYsSO6d+8evXv3jgEDBsQhhxwStbW1hf+7o61atSpzva6urqL3H3744Znrq1evLvlMM+VjJgAAAAAAAAAAAAAAIH0COkhUQ0NDfPWrX42HH344nnvuuWhsbMzc37Vr1zjiiCNi7NixMXHixDjttNNi0KBBFX1jU1NTrF27tl3hVHsVO7/Y+/6UmfIxEwAAAAAAAAAAAAAAsHcQ0EGifvrTn5a0/7333osVK1YUfu64445CUHfqqafGBRdcEJ/+9KejS5cuZX/j66+/XvgaXpaDDjqo7PeWcv67774bGzdubHVMaKZ8zAQAAAAAAAAAAAAAAOwdulb7AUDn1BzUPfDAAzF16tTCV+nmz59f9jtee+21onsOPPDAst9b6vmteWcpe81U/ZkAAAAAAAAAAAAAAIC9g4AOKGrJkiUxadKkOO+882Lr1q1lO/ett97KXO/fv3/07NkzKqlPnz7Rt2/fdr2zlL1m6hwzAQAAAAAAAAAAAAAAe4du1X4AkB+33nprPPXUU3H//ffH8OHD233epk2bioZZHaH5nm3btrX5naXsNVPnmKkjzJo1K2666aaK37NmzZqK3wEAAAAAAAAAAAAAAHkloANK8sILL8THP/7xWLBgQdTX17frrM2bN2eu9+vXLzpCsXtKCbPMlI+ZOsIbb7wRDQ0N1X4GAAAAAAAAAAAAAADs1QR0kKCjjz46xowZE8ccc0zhp7a2Nvbdd9/CT48ePQqh0VtvvRUbN26Mp59+Oh555JF4/PHHY+vWra06/80334xJkyYVfmfYsGFtfueOHTsy1/fZZ5/oCH379m3XO0vZa6bOMRMAAAAAAAAAAAAAALB3ENBBAmpqamLy5MlxxhlnxJQpU+LQQw/N3D948ODCz4gRI+KTn/xkXHrppYX4aPbs2fGd73wnXnzxxaJ3rl+/Pj73uc/FE088Eb169WrTu3fu3Jm53q1bx/xXVLF7ir2zlL1m6hwzAQAAAAAAAAAAAAAAe4eu1X4A0HZDhgyJr3/967F27dp44IEH4sILLywaz7WkOYL7h3/4h1i5cmX853/+Z3Tv3r3o7yxdujS+9rWvRVulGGaZqXIEdAAAAAAAAAAAAAAAQKkEdJBjL7/8clx55ZVxyCGHlO3Mrl27xj/90z/Fr3/96xg6dGjR/TNnzoznnnuuTXe99957mevNX9brCMXu2bNnT6vPMlM+ZgIAAAAAAAAAAAAAAPYOHfPZIKAiKvnlr/Hjx8ejjz4aJ554Yrzyyist7tu9e3dcfvnlcffdd5f9/c1nd4Ri97Tma3y/Z6Z8zNQRBg4cGCNGjKj4PWvWrInGxsaK3wMAAAAAAAAAAAAAAHkkoANadOihh8bcuXPjhBNOyAx07r333li9enXU1dWVdH6PHj06RZi1a9eudr2zlL1m6hwzdYQvf/nLhZ9Kq6+vj4aGhorfAwAAAAAAAAAAAAAAedS12g8AOrfRo0fH1772tcw97733Xtxxxx0ln13si2E7d+6MvIVZZqqcvAV0AAAAAAAAAAAAAABA9QnogKK++tWvxqBBgzL3zJkzp+Rz+/btm7m+bdu26AjvvPNOu95Zyl4zdY6ZAAAAAAAAAAAAAACAvYOADiiqV69eccEFF2TuaWhoiI0bN5Z07v7775+5vnXr1ugIxe4p9s5S9pqpc8wEAAAAAAAAAAAAAADsHQR0QKucddZZRfc8+eSTJZ15wAEHZK5v2bIlOsLbb7/drneWstdMnWMmAAAAAAAAAAAAAABg7yCgA1qlvr4+Bg0alLlnxYoVJZ35kY98JHO9sbGx4nHWpk2bYufOnWULs8yUj5kAAAAAAAAAAAAAAIC9g4AOaLVRo0Zlrq9du7ak8w499NCie15//fWopNac35p3lrLXTNWfCQAAAAAAAAAAAAAA2DsI6IBWO+ywwzLXN27cWNJ5ffv2LfrVsHXr1kUlFYv+mr+6t88++7T6PDPlYyYAAAAAAAAAAAAAAGDvIKADWm3ffffNXN++fXvJZw4bNixzffXq1VFJL774Yrve15bfMVPnmAkAAAAAAAAAAAAAAEifgA5otR49emSu79q1q+Qz6+vrM9dXrlwZlVTs/GLva8vvmKlzzAQAAAAAAAAAAAAAAKRPQAe02u9+97vM9d69e5d85ujRozPXly5dGpW0ZMmSzPVRo0aVfKaZ8jETAAAAAAAAAAAAAACQPgEd0GobNmzIXO/bt2/Zw6xly5bFnj17ohJ2794dzz77bIfHZmbqHDMBAAAAAAAAAAAAAADpE9ABrfbiiy9mrh988MElnzl27Njo1atXi+vbtm2LxYsXRyU888wzsX379hbXm981ZsyYks81Uz5mAgAAAAAAAAAAAAAA0iegA1qlsbGx8JWxLMOGDSv53Ob46S//8i8z98ybNy8qYf78+ZnrEyZMyIzGWmKmfMwEAAAAAAAAAAAAAACkT0AHtMovf/nLQkSXZeTIkW06e9KkSZnrd911V1TCnDlzMtcnT57c5rPNlI+ZAAAAAAAAAAAAAACAtAnogFa57bbbMte7d+8e48aNa9PZZ555Zub6kiVLYuXKlVFOzz//fDz33HMtrv8/9u47zKrq3h//Rxh6VQFLBFEkoBgjiA0FS6wxiRp7EoMhN5YYY8s3eqPxq7m5uddcU6wxMbFhbFFjCVFj79hAEZEiioiiSJHe4ffsc39nvlPO9FNm9rxez3OembP3Pmt9jn8kizXrvdYmm2xSZ1218Z1axncCAAAAAAAAAAAAAADSTYAOqNOMGTPqPAVs1KhR0bFjx0a1P2DAgNhrr71qfebqq6+OfLrqqqtqvT9ixIjo379/o9v3nVrGdwIAAAAAAAAAAAAAANJNgA6o049//ONYv359rc8cf/zxTepjzJgxtd6/6aabYu7cuZEPc+bMibFjx9b6zCmnnNLkfnynlvGdAAAAAAAAAAAAAACA9BKgA2p1xRVXxCOPPFLrM927d48TTjihSf2cfPLJ0adPnxrvr1ixIi688MLIhwsuuCBWrVpV4/0tttgiU09T+U4t4zsBAAAAAAAAAAAAAADpJUAHLcyECRNi5cqVRenrlltuiZ/+9Kd1PvfDH/4wevTo0aS+OnbsGGeffXatz9x6663x97//vUn93H333XH77bfX+sw555wTHTp0iKbynVrGdwIAAAAAAAAAAAAAANJLgA5amCScNGDAgLjqqqti+fLlBeljzZo1mXDSKaecEhs3bqz12eQUsOSksHxI+uzbt2+tz4wePTpeeeWVRrU/fvz4+P73v1/rM9tuu22dAbGG8J1axncCAAAAAAAAAAAAAADSSYAOWqC5c+dmwkNJiOncc8+NN998M29tP/PMM7HvvvvGlVdeWa/nkyBfz54989J3586d47e//W2tzyxdujQOOeSQ+Mc//tGgth944IE49NBDY9myZbU+95vf/CY6deoU+eI7tYzvBAAAAAAAAAAAAAAApJMAHbRgixYtit///vex6667xqBBg+L888+PcePGxcKFCxvUzieffBJ//etfY88994z9998/Xn311Xp97qyzzorjjz8+8unYY4+Nb33rW7U+s3jx4vjGN74R3/72t2Pq1Km1PjtlypQ48cQT46ijjoolS5bU+mzS3jHHHBP55ju1jO8EAAAAAAAAAAAAAACkzyYbN27cWOoigPo755xz6jwdbpNNNsmcTjd48ODo379/bLnllrHppptGhw4dyoN3CxYsiM8++yxefvnlmD59eoPrSIJOf/vb36KsrCzyLTl9bPjw4TFt2rR6PT906NAYMWJEbLfddtG1a9fM6Wfvv/9+vPDCC/U+nS/5b5UEB5PPF4Lv1DK+U0s0ZMiQTACxqp122inefvvtktQEhdT/wnGlLgGAPJj130eUugQA8sD4HCAdjM8B0sH4HCAdjM8B0sH4HCAdjM9JqyGtdP15/pMvQMkludjZs2dnXoVwwgknxNixYwsSnksk4ahHH300Ro4cGR9++GGdz0+cODHzaqx+/fpl+itkKMt3ahnfCQAAAAAAAAAAAAAASJc2pS4AaDnatm0b//Vf/xV33nlntGvXrqB9bbvttvHkk0/GgAEDCtrPDjvskOknCWcVmu/UMr4TAAAAAAAAAAAAAACQHgJ0QL3svvvu8dprr8WFF15YtD6T0NSrr74ahx56aEHaP+ywwzLtFzr8VZHv1DK+EwAAAAAAAAAAAAAAkA4CdNDCDB06NLbffvui9Tds2LC455574uWXX45dd901im3TTTeNRx55JG6++ebo06dPXtpM2rnlllvi4Ycfjp49e0ax+U4t4zsBAAAAAAAAAAAAAAAtnwAdtDCjR4+OmTNnxgcffJAJK40ZMyZ22WWXaNeuXV5PFDvnnHPi9ddfz7yOOeaY2GSTTaLU3/u9996La6+9NnbcccdGtbHTTjtlPv/+++/Hd7/73Sg136llfCcAAAAAAAAAAAAAAKDlKit1AUDj9OvXLxNWSl6JNWvWxOTJk2PSpEmZ4NGHH36YeX300UexZMmSWLlyZaxYsSJWr14d7du3j44dO0aPHj1iq622im222SYGDx6cCeLttddembaboy5dusQPf/jDzGv69OmZE88mTJgQb7/9duZ7Ll26NPMdO3fuHN26dct8rySMlZyid/jhh8fAgQOjufGdWsZ3AgAAAAAAAAAAAAAAWiYBOkiJJBSXBJCSV2vwxS9+MfNKE98JAAAAAAAAAAAAAAAgv9rkuT0AAAAAAAAAAAAAAAAAaBYE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQSoAMAAAAAAAAAAAAAAAAglQToAAAAAAAAAAAAAAAAAEglAToAAAAAAAAAAAAAAAAAUkmADgAAAAAAAAAAAAAAAIBUEqADAAAAAAAAAAAAAAAAIJUE6AAAAAAAAAAAAAAAAABIJQE6AAAAAAAAAAAAAAAAAFJJgA4AAAAAAAAAAAAAAACAVBKgAwAAAAAAAAAAAAAAACCVBOgAAAAAAAAAAAAAAAAASCUBOgAAAAAAAAAAAAAAAABSSYAOAAAAAAAAAAAAAAAAgFQqK3UBALQOq1evjunTp8ecOXNi6dKlsWLFiujcuXN069Ytttlmmxg0aFC0b9++1GUCAAAAAAAAAAAAAAApIkAHQMGMHz8+7r///nj44Yfj7bffjvXr19f4bNu2bWPIkCHx1a9+NY488sjYa6+9ilorAAAAAAAAAAAAAACQPgJ0AOTdnXfeGf/zP/8TEyZMqPdnknDdpEmTMq///u//jt122y3+z//5P3HCCScUtFYAAAAAAAAAAAAAACC92pS6AADSY+rUqbHffvvFSSed1KDwXC6vv/56nHjiiXHAAQfEtGnT8lYjAAAAAAAAAAAAAADQegjQAZAX9913X+y+++7x7LPP5rXdp59+OoYPHx5///vf89ouAAAAAAAAAAAAAACQfgJ0ADTZtddeG8cee2wsW7asIO0n7R5zzDFx3XXXFaR9AAAAAAAAAAAAAAAgnQToAGiSW265Jc4666zYuHFjQftJ2v/Rj34Ut956a0H7AQAAAAAAAAAAAAAA0kOADoBGe+WVV+IHP/hBvcJzI0aMiGuuuSYmTJgQCxcujLVr12Z+vvbaa3HVVVfFnnvuWWcbST9Jf6+++mqevgEAAAAAAAAAAAAAAJBmAnQANMqSJUvixBNPzAThajNw4MB4/PHH44UXXogzzzwzhg4dGptuummUlZVlfu62226ZE+zGjx8fjz76aAwYMKDW9tasWRMnnHBCpn8AAAAAAAAAAAAAAIDaCNAB0CiXXHJJvP/++7U+c9BBB2VOi/vKV75SrzYPOeSQzIl0BxxwQK3PJf1eeumlDaoXAAAAAAAAAAAAAABofQToAGiwKVOmxLXXXlvrM3vvvXc88MAD0aNHjwa13bNnz3jooYdijz32qPW5q6++Ot55550GtQ0AAAAAAAAAAAAAALQuAnQANNhll10W69atq/H+ZpttFnfddVd07ty5Ue136dIl7r777kyYriZJ/7/4xS8a1T4AAAAAAAAAAAAAANA6CNAB0CDvvfde3HvvvbU+88tf/jL69u3bpH623XbbTFCvNn/7299i1qxZTeoHAAAAAAAAAAAAAABILwE6ABrk2muvjfXr19d4f+DAgXHqqafmpa8f/vCHsf3229d4P6kjqQcAAAAAAAAAAAAAACAXAToA6i0JrN1xxx21PnPuuedG27Zt89JfWVlZ/PjHP671mdtvvz02bNiQl/4AAAAAAAAAAAAAAIB0EaADoN6efPLJmDt3bo33O3bsGN/5znfy2ufo0aOjffv2Nd7/+OOP4+mnn85rnwAAAAAAAAAAAAAAQDoI0AFQbw899FCt94844ojo1q1bXvvs2bNnHH744U2qCwAAAAAAAAAAAAAAaJ0E6ACot8cff7zOAF0h1NXuY489VpB+AQAAAAAAAAAAAACAlk2ADoB6mTt3brzzzju1PnPQQQcVpO+DDz641vtvv/12fPLJJwXpGwAAAAAAAAAAAAAAaLkE6ACol1deeaXW+3379s28CqF///6x1VZb1frMq6++WpC+AQAAAAAAAAAAAACAlkuADoB6mTBhQq33hw0bVtD+hw8fXuv9iRMnFrR/AAAAAAAAAAAAAACg5RGgA6Be3njjjVrv77LLLgXtv672BegAAAAAAAAAAAAAAICqBOgAqJfp06fXen/gwIEF7X+HHXao9f6MGTMK2j8AAAAAAAAAAAAAANDyCNABUKeNGzfGrFmzmhRwa6q62q+rPgAAAAAAAAAAAAAAoPURoAOgTp9++mmsWrWq1me23nrrgtZQV/vLly+PefPmFbQGAAAAAAAAAAAAAACgZRGgA6BOH3/8cZ3PbLnllgWtoT7t16dOAAAAAAAAAAAAAACg9RCgA6BOCxYsqPV+9+7do0OHDgWtoXPnztG1a9cm1QkAAAAAAAAAAAAAALQuZaUuAIDmb+HChXUG6Ioh6WfZsmWNrrOYrr322rjuuusK3s/UqVNzXp85c2YMGTKk4P1DsX38ac3/GwBAyzHkodo3RgCgZTA+B0gH43OAdDA+B0gH43OAdDA+B0gH43PSaubMmTmvz549O9JMgA6AOi1atKjW+926dStKHXX105wCdJ999llMmTKlZP2vXr26pP0DANRmioODAQCg2TA+BwCA5sP4HAAAmg/jc1qbtWvXRpq1KXUBADR/q1atqvV+ly5dilJH165dm1QnAAAAAAAAAAAAAADQugjQAVCnNWvW1Hq/rKw4B5rW1U9ddQIAAAAAAAAAAAAAAK2LAB0AdRKgAwAAAAAAAAAAAAAAWiIBOgDqtGHDhlrvt23btih11NXP+vXri1IHAAAAAAAAAAAAAADQMhTnyCAAWrS6Tn5bt25dUeqoq5927dpFc9G7d+/YaaedCt7PtGnTygOOScAwGzJM/lv069ev4P0DkB8zZ86M1atXV7veoUOHGDBgQElqAgCA1sr4HAAAmg/jcwAAaD6MzwHSYfbs2bF27dpq13v27BlpJkAHQJ3at2/fLAJ0uf6PuiF1FtOZZ56ZeQFAfQwZMiSmTJlS7Xoyufj222+XpCYAAGitjM8BAKD5MD4HAIDmw/gcgJasTakLAKD5q+tktzVr1hSljpYUoAMAAAAAAAAAAAAAAEpPgA6AOnXt2rXW+8uWLStKHUuXLm1SnQAAAAAAAAAAAAAAQOsiQAdAnTbbbLNa7y9ZsqQoddTVT111AgAAAAAAAAAAAAAArYsAHQB12nzzzWu9//nnnxeljsWLFzepTgAAAAAAAAAAAAAAoHURoAOgTr169ar1/urVqwseolu4cGGsWbOm1mcE6AAAAAAAAAAAAAAAgIoE6ACoU79+/ep85tNPPy1oDfVpvz51AgAAAAAAAAAAAAAArYcAHQB16tq1a52nu33wwQcFrWHWrFm13u/Tp0906dKloDUAAAAAAAAAAAAAAAAtiwAdAPWy3Xbb1Xp/xowZBe3/3XffbVJ9AAAAAAAAAAAAAABA6yNAB0C9DBkypNb706ZNK2j/dbVfV30AAAAAAAAAAAAAAEDrI0AHQL0MGzas1vsTJ04saP8TJkyo9f7QoUML2j8AAAAAAAAAAAAAANDyCNABkJcA3RtvvBHr168vSN/r1q2LN998s9ZnBOgAAAAAAAAAAAAAAICqBOgAqJfhw4dHx44da7y/bNmyeP311wvS9yuvvBIrVqyo8X5S12677VaQvgEAAAAAAAAAAAAAgJZLgA6AeklCavvss0+tzzz22GMF6fvxxx+v9f7IkSNrDfcBAAAAAAAAAAAAAACtkwAdAPV28MEH13r/vvvuK0i/99xzT633DznkkIL0CwAAAAAAAAAAAAAAtGwCdADU27HHHlvr/QkTJsS0adPy2ufkyZPjrbfeqvH+JptsUmddAAAAAAAAAAAAAABA6yRAB0C9DRgwIPbaa69an7n66qvz2udVV11V6/0RI0ZE//7989onAAAAAAAAAAAAAACQDgJ0ADTImDFjar1/0003xdy5c/PS15w5c2Ls2LG1PnPKKafkpS8AAAAAAAAAAAAAACB9BOgAaJCTTz45+vTpU+P9FStWxIUXXpiXvi644IJYtWpVjfe32GKLTD0AAAAAAAAAAAAAAAC5CNAB0CAdO3aMs88+u9Znbr311vj73//epH7uvvvuuP3222t95pxzzokOHTo0qR8AAAAAAAAAAAAAACC9BOgAaLAkuNa3b99anxk9enS88sorjWp//Pjx8f3vf7/WZ7bddts6g3wAAAAAAAAAAAAAAEDrJkAHQIN17tw5fvvb39b6zNKlS+OQQw6Jf/zjHw1q+4EHHohDDz00li1bVutzv/nNb6JTp04NahsAAAAAAAAAAAAAAGhdBOgAaJRjjz02vvWtb9X6zOLFi+Mb3/hGfPvb346pU6fW+uyUKVPixBNPjKOOOiqWLFlS67NJe8ccc0yj6gYAAAAAAAAAAAAAAFqPslIXAEDL9cc//jFef/31mDZtWo3PbNy4MW6//fbMa+jQoTFixIjYbrvtomvXrplT6t5///144YUX4s0336xXn4MHD47rr78+j98CAAAAAAAAAAAAAABIKwE6ABotCcE9+uijMXLkyPjwww/rfH7ixImZV2P169cv01/SLwAAAAAAAAAAAAAAQF0E6ABokm233TaefPLJOOyww2LmzJkF62eHHXaIRx55JBOiA4C0+eEPfxifffZZteu9e/cuST0AANCaGZ8DAEDzYXwOAADNh/E5AC3ZJhs3btxY6iIAaPkWLVoUJ510UuaEuHxLwnl33HFH9OzZM+9tAwAAAAAAAAAAAAAA6dWm1AUAkA6bbrpp5oS4m2++Ofr06ZOXNpN2brnllnj44YeF5wAAAAAAAAAAAAAAgAZzAh0Aebd8+fJM8O2aa66Jd955p8Gf32mnneLMM8+MU045JTp37lyQGgEAAAAAAAAAAAAAgPQToAOgoKZPn545mW7ChAnx9ttvx0cffRRLly6NFStWZMJx3bp1i2222SYTmhs2bFgcfvjhMXDgwFKXDQAAAAAAAAAAAAAApIAAHQAAAAAAAAAAAAAAAACp1KbUBQAAAAAAAAAAAAAAAABAIQjQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCoJ0AEAAAAAAAAAAAAAAACQSgJ0AAAAAAAAAAAAAAAAAKSSAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAAAAAAAAAAAAAAAAkEoCdAAAAAAAAAAAAAAAAACkkgAdAAAAAAAAAAAAAAAAAKkkQAcAAAAAAAAAAAAAAABAKgnQAQAAAAAAAAAAAAAAAJBKAnQAAAAAAAAAAAAAAAAApJIAHQAAAAAAAAAAAAAAAACpJEAHAAAAAAAAAAAAAAAAQCqVlboAAAAAAAAAAAAAAAAg/5599tmc1wcNGhRbbLFFlNKnn34a06ZNy3lv1KhRRa8HgPTaZOPGjRtLXQQAAAAAAAAAAAAAAJBfbdq0iU022aTa9RtuuCHGjBkTpfSXv/wlTj311GrXk3rXrVtXkpoASCcn0AEAAAAAAAAAAAAAQIpVPHcnV6CuVJwHBEAxCNABAAAAAAAAAAAAAECKZUNzzTGwVjHQ1xzrA6Dla1PqAgAAAAAAAAAAAAAAgMJp7sG05l4fAC2bAB0AAAAAAAAAAAAAAAAAqSRABwAAAAAAAAAAAAAAAEAqCdABAADkUdu2bXO+brzxxlKXFn/5y19y1lZWVlbq0gAAAAAAAAAAAAAKwipJAACAPNq4cWO1a5tsskk05/oAAAAAAAAAAKDYrGMBoFgE6AAAAPKsYmCuOU70Nff6AAAAAABovVavXh3Tpk2LDz/8MObNmxeLFy/OXFuzZk1R57QvueSSovUFAACt1YoVK3KuZ2nXrl2JKgIgrQToAAAACiD5I35zOnmupdUHAAAAAEDrsHLlyhg3blw8+uij8fzzz8eMGTOaxeZvAnQAAFB4S5YsyXm9Q4cORa8FgHQToAMAAAAAAKhg+fLlJT3pYtSoUUXrCwAASuXdd9+N3/zmN3HbbbeVnzrRHIJzCRvQAQBA8f5dkMtmm21W9FoASDcBOgAAAAAAoNVKgnKPPfZY5qSLN998M6ZOnZoJzpVyoe66detK1j8AABTaqlWr4mc/+1lce+21mbFvxdBccwiuNZcQHwAAtAavvfZapX8HZMfjW2yxRQmrAiCNBOgAAAAAAIBWZcOGDfG3v/0trr/++kxwLnmfZbEsAAAUzowZM+Koo47KbFyRHXvnCs2ValzeHAJ8AADQWkyaNCmmTJmSGYcn/wbIjseTnwMGDCh1eQCkjAAdAAAAAADQajz44IPxk5/8JGbOnJlzYW4pF8wK7wEAkGZvvfVWHHzwwfHZZ59VWhybMBYGAIDWZcWKFXHaaafVeH/IkCFFrQeA9BOgAwAAaCVWrVpV/nvFhQlt27YtUUUAAFA8K1eujDPOOCPGjh1baXFuczntwkkXAACk2bx58+JrX/ta5mcy9s2Of5vThhYAAEBhJeP/5FTqcePGxdVXXx0ffPBB+elzVY0YMaIkNQKQXgJ0AAAArcSyZctyXu/QoUPRawEAgGJavHhxHHHEEfHSSy9VO+ki4bQLAAAorNNPPz0+/PDDegXnjM8BAKBmBx54YN7a+p//+Z+47bbbopDWrl2b2eBuyZIlMXv27Mz7uv5N0K1bt9hnn30KWhcArY8AHQAAQCuRTETm0qNHj6LXAgAAxbJu3bo4+uij48UXX8y8r2nBbsV7AABA/jz55JNx//331xmeS66XlZXFQQcdFHvttVfssssuMXjw4MwcdrKAtmvXriWpHwAAmpOnn366UXPZ2XF4xZ/Tp0/PvAqttvn4iveyG+Add9xx0a5du4LXBUDrIkAHAADQSkyaNKnS++wkZJ8+fUpUEQAAFN6ll15aaUFBXcE5p10AAEB+/dd//VfO8XbFMfqmm24aF198cZx88snRq1evktQJAAAtST7msos5H54r9Jftv+K9tm3bxvnnn1+0ugBoPQToAAAAWoFPPvkkxo8fX21CMnnfv3//ktUFAACFlOyc++tf/7peJ10kkpMthg4dmvOkC6fTAQBAw3388ceZE+hyzU1nx+FHHXVU/OlPfxKcAwCABmjInHVNQblSzHvXFtpL6jnvvPMy8/MAkG8CdAAAAK3ARRddFOvXry9flFBxEtTEIwAAaT7pYt26dZUW52ZVvPb1r389xowZE1/96lejXbt2JaoWAADSZ9y4ceVz0hVPl8heO/744+Ovf/1rtGnTptSlAgBAi9LSTqDLpeLalaSWb37zm5VOsAaAfBKgAwAASLGJEyfGr371q7jvvvtyLhpO7LHHHiWpDQAACmnZsmVx99135zzpIpGMjXfYYYf4wx/+EF/5yldKVCUAAKTbiy++WOl9xfH5dtttF7fccovwHAAAtKIT6HLV1qlTp7j44ovjwgsvbBY1AZBOAnQAAAA1+MUvfpG3th588MGYM2dOFNLatWtj5cqVsWTJknjvvffinXfeiU8++SRzr+KpcxUnG8vKyuKAAw4oaF0AAFAKDz/8cGZ8XNNJF0OGDIknnngi+vTpU+pSAQAgtaZOnVrtWnZMfvnll0f79u1LUhcAALR0aTiBbqeddooTTjghTj/99Ojdu3dJawEg/TbZWOr/5wMAAGimkl1vG7qzVXPatatiLTUtGj7ssMNi3LhxRa8NAAAK7eyzz46rr7660vg3kfzerVu3zELerbbaqtRlAgBAqm299dbx6aefVrqWjMl79OgR8+fPj7Zt25asNgAAaIn233//Bq9BeeaZZyrNlWd/Dhw4sODz5MmYP9k4I5mXT0Jyffv2jcGDB8eee+4ZW265ZUH7BoCKnEAHAACQ0l27Kk6Y1tT/OeecU8SKAACgeCZNmlTtWnZRwMUXXyw8BwAARbBkyZKcY/KDDjpIeA4AABrh6aefbtQG0rn89Kc/jTFjxuShKgBo/gToAAAA6tCQnbua0wl0uerJ1pH8PPzww+Pggw8uSV0AAFBo77//fqXxb1ZZWVmcfvrpJawMAABaj9WrV+e8npx0AQAAAADFIkAHAACQ0hPoajuNLlmccOutt5a0JgAAKKSFCxfmPOli3333jW7dupWsLgAAaE26dOkSS5curXa9T58+JakHAAAAgNYp93msAAAAtDjJYuCaXtkFw8krOXXu+eefj80226zUJQMAQMGsXLky5/Vhw4YVvRYAAGitevTokfN6+/bti14LAAC0dtn1IxU3YQaA1kKADgAAoAnBtFxBtaa20dhXVdnAXPakjQMOOCAefPDBePTRR6N3794F/q8GAACl1bFjx5zXjYUBAKB4BgwYkJmjrmrevHklqQcAAFqrimtIsi8AaE3KSl0AAABAc5avCcNiTDy2adMms2tvt27dMouC+/btG4MHD44999wzDjzwwOjTp0/BawAAgOaie/fusWLFipzXAQCA4th5553j6aefrnZdgA4AAIrnqaeeynl90KBBRa8FAEpFgA4AAKAGGzZsaFSILTntLXvqW/bnDTfcEGPGjClInQAAQHXbbLNNzJ07t9ppzQsWLChZTQAA0Nrst99+cc0111S7PmnSpJLUAwAArXVcDgCtXZtSFwAAAAAAAFCIky5ycdIFAAAUz2GHHRYdOnQof5/deO6VV16Jzz//vKS1AQAAANB6CNABAAAAAACps+eee+a8PnPmzKLXAgAArVWXLl3iuOOOy4TmKlq/fn2MGzeuZHUBAAAA0LoI0AEAABRAsosuAABQOl//+tcrjcuzJ10888wzsXbt2pLWBgAArclPf/rTnGPz//iP/4gNGzaUtDYAAAAAWgcBOgAAgDxL/vCffQEAAKWx1VZbxX777VdtXL5ixYpMiA4AACiOnXfeOb7//e9XG5vPmDEj/vjHP5asLgAAAABaj002WtEJAACQN5dddlnO60ceeWTsuuuuRa8HAABas4cffjiOOOKI8tMukj+JJL8fdNBB8eijj5a6PAAAaDUWL16cCdJ9/PHH5deS8XmnTp3iiSeeiL322quk9QEAAPn37rvvxty5c2P+/PmxevXq6NGjR2y//fYxcODAaNPGOUAAFJcAHQAAAAAAkFrJKXTPP/98+ftsiO6RRx6Jgw8+uKS1AQBAazJhwoQYNWpUrFy5stL4fPPNN8+cEr3TTjuVtD4AAKDpxo8fH9ddd108/vjj8emnn+Z8JgnSHXrooXHqqafGAQccUPQaAWidBOgAAAAAAIDUmjZtWuY06DVr1pRfS/400r9//3jppZdiiy22KGl9AADQmvzzn/+MY489NnP6RMXxeZcuXeLKK6+MMWPGlLQ+AACgcZLTppNA3MMPP5x5X1dEIdnoLnHggQfG9ddfHwMGDChKnQC0XgJ0AAAAAABAqo0dOzZGjx5d/gf57J9Ghg0bljnpIlmsCwAAFEcyBj/yyCNjyZIllcboye+HHXZYXHjhhTFy5MhSlwkAAKnx+eefZ058XrduXbV77du3jzfeeCN69erV6PYnTpwYX//612Pu3Lnl8+/ZsX5NKkYYunfvHnfccUccfvjhja4BAOoiQAcAAAAAAKTeZZddlnlVDdHtvPPOceedd2YWDwAAAMXx3nvvxQknnBCvv/56tRBdIjlF+pvf/Gbss88+seeee0anTp1KXDEAALRcN998c87TnpPx94knnhh//etfG9321KlTY++9947FixeXt5lVU0wh1zNJkO/ee++NI444otG1AEBtBOgAAAAAAIBW4fLLL49///d/r/bH+WQx7qWXXhpnnHFGdO3ataQ1AgBAc3HggQcWtP3Vq1fHSy+9VOMC2+z1tm3bxmabbRabbrpp5meHDh0KWle27yeeeKLg/QAAQDEkobSHH3642tg7ef/KK6/Ebrvt1qh2165dG7vvvntMmjSp2uZ19VXxc8n8fFLP4MGDG1UPANRGgA4AACBFFi1alFl00KNHDzvyAgBADskOtv/2b/8WS5YsybzP/pkk+SN9t27dMveOPvrozB/9kx1vAQCgtWrTpk2lBbaFUHXZUl2LbgtdT7bvpJ/169cXvC8AACi0FStWZDajWLduXfm17Hh7+PDhmcBaY11xxRXx05/+tMZxfG3j91ybZyTXRo0aFU8//XSjawKAmgjQAQAAtFDLly+Pu+66Kx577LF47rnnYt68eZX+oN+nT5/MZOfXvva1+Na3vpVZDAwAAC3BL37xi4K2P3PmzBg7dmzOky6y15Lw3NChQ6Nfv35FPekicckllxSlHwAAqE+ArhRLi2paaFvoWrLfV4AOAIC0ePbZZ2P//fevNNbN/kzm4i+66KJGtbts2bLM/PnixYsbvDlGrnsV60rm75N1LgCQTwJ0AAAALUzyR/vf/e538etf/zoWLFhQr914u3Tpktn1K3k5RQMAgOau2Cdd5ArSVb1eTBbqAgDQWk+gy6XY43IBOgAA0iRZW3LhhRfmDNBNnDgxdtlll0a1+9vf/jZ+8pOfVNt0o2I4rl27dnHwwQfHPvvsE7169Yr58+fH66+/Hg899FCsXbu20mcrfm7rrbeODz74INq2bZuX/wYAkBCgAwAAyKNkgm/06NGxbt26aveSyb5rr702MynYWEuWLIljjjkmnnzyyXot7K36THKCxn333ZfZBQwAAJqrUp10UXVcXaqTNizUBQCgtZ9AVypOoAMAIG2OPvroeOCBB6ptJJesG5k1a1aj2x08eHDMmDGjvL1ExX8/7L777nHbbbfFwIEDq312zpw5mRPmnn/++Wohuux4/MEHH4wjjjii0fUBQFVl1a4AAADQaI899ljceeedOQNt2R21Gmvp0qUxcuTImDx5cvmEYV2BuaoToBMmTIh99903nnrqqRgwYECjawEAgGIo5EkTuRYB1zaeLobWtDAZAICWo1QnMwMAAE03derUamtHkvfDhw9vdJuvvfZaTJ8+vcbw28477xxPPPFEdO3aNefnt9lmm8z9/fbbL8aPH59z446xY8cK0AGQVwJ0AAAAeXT33XfXuPj2vPPOa1LbY8aMibfeeqvSQt7aFtjmWvybXEt28komGV9++eXo0aNHk2oCAIC0BspKffodAAA0FzZ6AACAluuDDz7Ief1LX/pSo9u85557ar1//fXX1xiey2rXrl3cddddMWjQoFi9enX5HHl2bctDDz0UK1eujE6dOjW6TgCoSIAOAAAgTzZs2BAPPPBApUm9RDKx169fvzjqqKMa3fb9998f9957b63BudpOpKu649eMGTPi/PPPjz//+c+NrgkAAAAAgPQaNWqUjR4AAKAF+/TTT2PVqlWVTofL2mWXXRrd7j//+c9KbVVsf+TIkbH33nvXq52+ffvGD37wg7j66qur1ZjUPXHixBgxYkSj6wSAigToAAAA8mTSpEmxePHiSpN62Z9NCc8lwbwLLrig/H3V8FzFSclcp87lup68v/nmm+O0006L3XffvdG1AQBAIVmsCwAApfP000+XugQAAKAJZs+eXeO9AQMGNKrNTz75JCZPnly+9qSqJBDXEKNHj84E6HIRoAMgnwToAAAA8mT8+PE13vvGN77R6HbvueeezIlxuSYfKwbkevToEXvssUf06tUr5s+fH2+++WbMmzevPEiXPFNxt64kmPejH/0oXn755UbXBgAAhZLrD+8AAAAAAED9LFmypMZ7yRqTxnjuuedq3AivQ4cODd5getiwYbHVVltlgnlVN9VLAnQAkC8CdAAAAHny0ksvlf9ecVIvmXQcNWpUo9v9wx/+UO1axeDc5ptvHldccUV8+9vfjrKy//fPvPXr18e9996bCcktWLCgWogu+fnaa69lXsOHD290fQAAkG/JZg8AAAAAAEDjrVixIu8Buueff77atew6lP322y+6dOnS4Da//OUvx9y5c6sF6KZOndqoGgEglzY5rwIAANBgkyZNyjlBmJwK17Zt20a1OWvWrHjmmWcqnT5XNTz39NNPx+jRoyuF5xJJn8cff3wmILfllltW+mxFf/3rXxtVGwAAAAAAAAAALS9A171790a1+eKLL9Z477DDDmtUm4MHD652LVkT8/nnnzeqPQDIRYAOAAAgT5KwW66A2i677NLoNu+5556c17PhvN/+9rcxZMiQWtvo169f3HnnneUBvKxsKO+OO+5wwgcAAAAAAAAAQIqsWrWqxnvr1q1rcHsrV66MN998M+famMSBBx4YjdGnT59K77PtL168uFHtAUAuAnQAAAB5kEzaZSfuqgbVmhKge+ihhyq9rzgJucMOO8TJJ59cr3ZGjhwZX//618uDdxVr/Oyzz2Ly5MmNrhEAAAAAAAAAgOalU6dONd5bvnx5g9t76aWXyoN32fUnWT169IgvfelLjaqza9euOa8vWbKkUe0BQC4CdAAAAHnwwQcf1Hhv8ODBjWpz2bJlmcnHqjt3ZSchTz311Aa1d+aZZ9Z4b+LEiY2qEQAAAAAAAACA5icJtdXk888/b3B7Tz/9dLVr2TUse++9dzRWhw4dcl5fsWJFo9sEgKoE6AAAAPJgwYIFNd7bdNNNG9Xmiy++WOPOXcnvJ510UoPaO+CAA6Jbt27ln69IgA4AAAAAAAAAID26d+9e472ZM2c2uL2nnnqqxnsjR46Mxlq9enXO6507d250mwBQlQAdAABAHtS261VtO3rV5vnnn692LQnSJXbbbbfYeuutG9Reu3btYujQoeVtVPTWW281qkYAAAAAAAAAAJqf2jZ8njZtWoM3lh4/fny1DZuzRo0aFY21dOnSnNe7du3a6DYBoKqyalcAAABoFgG6F154Ief1ZDLy8MMPb1SbO+64Yzz77LOVriWBuvnz5zeqPQAAAAAAqM2YMWNqvL7vvvtGKT333HNx00035ZyH/8tf/lKSmgAAIF922GGHaN++faxdu7Za8O2JJ56IM888s95tPfTQQ7F+/fpMO8k6k4rtJSfF7bHHHo2u8+OPP855XYAOgHwSoAMAAMiDlStX1nivpt23arNhw4Z45ZVXavzsgQceGI2xzTbbVKstmdhcsmRJo9oDAAAAAIDa3HzzzTnnupPwXKkDdNOnT69WX3YxsAAdAAAtXVlZWey8884xYcKE8jFvdp3Ik08+GatWrYqOHTvWq61k3FxVduw8YsSITF+NNXv27Jzt9u7du9FtAkBVAnQAAAB50K5du1pPp+vevXuD2nvjjTdi+fLlOXfuSnYH22uvvRpVZ027cwnQAQCQRrfeemvO6/vss08MGDAgSmnmzJk1njr93e9+t+j1AABAoSVz3U3ZeK6Y9QEAQFrsuuuumQBdouL6k6VLl8Yf//jHOPvss+ts46233opnn322fA1LvjaBzpoyZUrOfyNsv/32TWoXACoSoAMAAMiD2gJyyaRjQwN0Tz/9dLVr2YnM3XbbLROia4zOnTvXWCMAAKTNKaeckvOP7jfccEPJA3TJmP/UU0/NeU+ADgCANMqOzZtrUK251wcAAI1x8MEHx4033ljpWjYI98tf/jKOPvro6NevX61tnHfeebXe/9rXvtbo+pL1Ku+//37OezvssEOj2wWAqtpUuwIAAECD1RaQmzVrVoPbyxWgyxo5cmQ01tq1axt8gh4AALR0yUKA7Ku51tUc6wMAgHxq7uPd5l4fAAA0xpFHHlm+pqXqCXILFiyII444ImbOnFnj53/605/GE088UemzFX8fOnRoDBkypNH1vfjii7Fhw4acY/JSb4QHQLoI0AEAAORBjx49arw3Y8aMBrW1evXqeOqpp3KelNHUAN3y5ctzXu/WrVuj2wQAgOYuGVvXNL5uLrU11/oAAAAAAGi5OnbsGMcdd1ylcFrye3Ze+u23386E4M4666z417/+FVOnTo3JkyfHbbfdFiNGjIjf/OY35Z+pKvn89773vSbVl6yPqcmXvvSlJrUNABWVVXoHAABAoyS7XmUXvFZd+PrCCy/EKaecUu+2HnvssUzQLbtjV8X22rZt26QA3aeffprzeteuXRvdJgAANHdVx9XNTXOvDwAAAACAlusnP/lJjB07NtauXVu+FqXivPSyZcviuuuuy7yqyj5X8fS5rN69ezdoPUwuDz30UM71Nsk6FgE6APLJCXQAAAB50KVLlxg4cGCla9kJxEceeaRBbd1+++3VrmUnIpNdv5pyWtycOXNytrvppps2uk0AAAAAAAAAAJqnQYMGxfnnn1/tFLmKJ9FlQ3VVXxXDc1U/9/Of/zyzXqaxpk2bFu+88055mxXb3mOPPWw8B0BeCdABAADkya677lppQi/r448/jvvvv79ebcybNy/uu+++nJOAybUDDzywSTVmJx6rttu/f/8mtQsAAAAAAC3NunXryn+vOC/fpo0lVQAApEsSdvviF79Ybexb8WS5XK+K618qnhS3++67x+mnn96kmm699dYa7+29995NahsAqjLbAwAAkCf77LNPzuvJZGIyEblq1ao627jssstizZo15Z+r6pBDDml0fWvXrs3s3pUrnLfDDjs0ul0AAAAAAGiJli9fnvN6u3btil4LAAAUUseOHWPcuHHRp0+fzPtsQC5R0+lzucJzybUtttgiszl027ZtG13P+vXrMwG6mk6ZO+CAAxrdNgDkIkAHAACQJyeeeGKUlZVlfs/uwpWd6JsyZUqMHj26PByXy9///vf44x//WGlysOLvX/jCF5o0Qfj666/XGM4bMGBAo9sFAAAabsOGDeW/1/RvAAAAoLDmz5+f83qXLl2KXgsAABRasjbkxRdfjCFDhuQ8ea6qqveSzwwcODCefPLJ2HrrrZtUSxLA++ijj8rbrdh/9+7dY9SoUU1qHwCqEqADAADIk969e8ehhx5aKZyWneRLft5zzz2xxx57xL333hurV68uf2bOnDlx4YUXZgJ42UW0udr47ne/26T6nn322Rrv7bjjjk1qGwAAyM9JF9lNOQAAgMJLNr/LpVevXkWvBQAAimG77baL1157LS655JLMxhEVT5qrGJirejpdckrz6aefHq+88koMHjy4yXX87ne/K++j6iZzBx98cJNOtwOAXPwVFgAAII/OOuusGDduXKVrFUN0kyZNiuOPPz7zPvkD/Lp162LRokXVnqs6Qdi+ffs47bTTmlTbP/7xj/LfK7adTHIOHz68SW0DAAANs3jx4pzXO3XqVPRaAACgNVq7dm08//zzlebLs/P0X/jCF0paGwAAFFKyBuXSSy+N8847L+6666745z//mQnGzZ07t9JzyUlwyUbRX/nKV+I73/lO3sbJTzzxRIwfPz7nvWQ8/rWvfS0v/QBARQJ0AAAAeXTIIYfEN7/5zbjvvvsqheEqhuOyr3nz5lX6bMU/0mdlP3fGGWdE3759G13X/Pnz46WXXqq2ECDx5S9/OTp06NDotgEAgIabPn16zuubb7550WsBAIDW6Pbbb4+FCxeWz91XnD8fOHBgSWsDAIBiSAJyP/jBDzKvxKpVq+Lzzz8vn6tONmQuhA0bNmROoKvJkUceWZB+AWjdBOgAAADy7Morr4zHHnssli1bljNEV5tcp8/16dMnfv7znzeppjvuuCPWr19fbSFA8nPvvfduUtsAAEDDJbvr5jrpYssttyxpXQAA0BokJ2ycc845Nc7ZDxs2rOg1AQBAqXXs2LEoc9QHH3xw5gUAxSRABwAAkGdf+MIXMoG1o446qlJoraaAXPZaVvZecr19+/Zxzz33xKabbtqkmm6++eYa740cObJJbQMAAA3z3HPPxfvvv5/zpIsBAwaUtDYAAKjN7Nmz89bWggUL8tpeLmvXro2VK1fGkiVL4r333ospU6bEuHHjYvLkyeVj8apz9IlRo0YVtC4AAAAAikuADgAAoAC++tWvxr333hvf+ta3Yvny5dUCc7n+IF/1mWRnryT4ts8++zSplpdeeikmTpyYc3FuWVlZHHLIIU1qHwAAqL+5c+fGqaeeWuP9XXbZpaj1AABAQ/Tv37/GU9tqU3WTueTnhRdemHkVW8WN7nJtejdw4MAYNGhQ0esCAAAAoHDaFLBtAACAVu3rX/96TJgwIbNTbcXQXPKH+FyvRPa5nXbaKZ5//vk4/vjjm1zHlVdeWf57xUUAye/77rtvdOvWrcl9AAAANZszZ07861//irPPPjsz1p8+fXqNJ100dQMNAAAotOw8dn1f+WonX69ErhBgdgO62ja8AAAAAKBl2mRjbTNVAAAA5MVTTz0Vf/7zn+ORRx6JRYsW5Xymc+fOMXLkyBgzZkwce+yxjdrFt6pkYW6yQDfXQoWk/SuuuCLOPffcJvcDAACFtv322zf4M7Nmzap0EnP25+abbx5du3aNQlq7dm2sXLkyli1blvk9K9e4PHu9d+/e8cknn+Tl3wIAAFAIbdq0afB4taalSaUc91asqeKYfJtttompU6dm5usBAAAASI+yUhcAAADQGhxwwAGZV/IH+HfffTfee++98iBdsng3WSi78847R1lZfv+Zlpxil5yEV5Ojjz46r/0BAEChVAzDNUT2+Yo/58+fn3mVQsXFuRVrTK5/+9vfFp4DAKBFyMd+3c1hz++K4/Nkfv7GG28UngMAAABIISfQAQAAAAAAzV5aTrqoWFfFxbrJIt3kpIvkxAsAAGju4/KWvNyo6r8Hku/SqVOnuOWWW+LYY48tWV0AAAAAFI4T6AAAAAAAAAqorsXFyQLe//iP/xCeAwCgxWjIphTNcWOLbE1JIPDoo4+Oyy+/PAYMGFCyegAAAAAoLAE6AAAAAACgxcjHSRelPC2j4iLhbB1nn312nHvuuSWrCQAASjGeLtW4vGfPnrHHHnvEQQcdFMcdd1xsu+22JakDAABagg0bNsT06dNjzpw58dFHH8WSJUti5cqVsXr16kpj+ksuuaSkdQJAXTbZWMq/EgMAAAAAANRDcjJEQ0+oaI4nXVSsa6uttoorrrgiTjrppJLWAwAA9XXLLbc0eOw7ZsyYzBg8+b3iz+9973sxcuTIKKS2bdtG+/bto1u3btG7d+/o27dvbLHFFgXtEwAAWrL169fHk08+Gf/617/imWeeicmTJ2fCcvX5HAA0ZwJ0AAAAAABAiwjQpUGXLl1iv/32ixNOOCHzShbzAgBAa9gMo2qA7oYbbsiE6wAAgNL78MMP46qrroqxY8fGZ599lrlW35hBMr5vSIDukUceiV/96lc57x1xxBFxwQUX1LstAKgvAToAAAAAAKDZS06naMzpGLkW6u69994xcODAKPZJF4MHD46dd945cw8AAFoLAToAAGi+Fi1aFBdddFHceOONsXbt2mqhuWTsXpvs+L4hAbpVq1bFdtttF/PmzavW1uabbx5z586NsrKyBn4TAKid/2cBAAAAAACavZtuuqlRAbpckkW6FuoCAEBx1bXwFgAAKK6///3vccYZZ2ROnMsG53KN22s6r6exY/yOHTvGWWedFRdffHGlTTYSCxcujIceeiiOPvroRrUNADVpU+MdAAAAAAAAAAAAAAAgVS688MI49thjM6fAZQNs2RBb8r7iqxBOPfXU6NChQ84gXk2b4wFAUziBDgAAAAAAAAAAKIh+/frlPJmiW7duJakHAABasyQQN2bMmLj11lsrnfyWvVfXyXL5CtT16tUrjjrqqLjrrrvK+8ueRvfwww/HkiVLonv37nnpCwASAnQAAAAAAECqVfzjOwAAUFyzZs0qdQkAAMD/78wzzyw/4a3iiXMV31e8Vkgnn3xyJkCX7S/b/7p16+Kpp56KI488suA1ANB6tCl1AQAAAAAAAIWS/NG96gsAAAAAAFqbG264Ia6//vpMUC172lvV8Fz2/YgRI+JnP/tZPPLII/HOO+/EvHnzMp+t+GxTHXLIIdGzZ8+cbT7++ON56QMAspxABwAA0MwsX748Vq5cGatXr47169cXvL8OHTrEFltsUfB+AACg2N5///2c13v16lX0WgAAAAAAoFRmz54d5513Xq2nzrVp0yZOOumkuOCCC2LIkCHV2mjbtm1eayorK4uDDz44/va3v5XXkQ32PfHEE3ntCwAE6AAAAEpk1qxZ8eSTT8bEiRNj8uTJmfeffPJJrFmzpqh1DB8+PF5++eWi9gkAAMWw7bbblroEAAAAAAAouXPOOSezoXM2oJaoGKbbaqut4s4774yRI0cWta5sgC5bR7amadOmZU6969OnT1HrASC9BOgAAACK6OOPP46bbropxo4dGzNmzKh0LztBWWyl6hcAAAopGXMnm1Xkkuyc+/3vf7/oNQEAAAAAQLG99dZb8cADD1Q6bS4bpEt+7rLLLvHYY49F7969i17biBEjaq37K1/5SlHrASC9BOgAAACKYP78+XHJJZdkwnPJCXO5QmsVJyoBAICm+dOf/hQvvvhiznvZ3WwBAAAAACDtrrzyyvKwXMVT3hLJyXPjxo0rSXguseOOO0aXLl1ixYoV1dbNTJ06VYAOgLwRoAMAACiwu+++O84888xYuHBheXCutrBcMU6Ey06KAgBAWs2aNSvnmLdnz55x5JFHlqQmAAAAAAAoprVr18Z9991XbZ1KNkh32223xRe+8IWS1ZfUMGjQoJgwYULOAB0A5EubvLUEAABANRdddFGcdNJJsWDBgvLJx+yEX/I+1wsAAGi6RYsWlY+/s2Pw5OfIkSOjbdu2pS4PAAAAAAAK7vnnn4/PP/8883vVU+gOPfTQ2H///UtdYgwcODDn9enTpxe9FgDSywl0AAAABfLv//7vcfnll2d+r7hLVsWQXK6T6GoK0TXl1Lpcn62tPQAAaOnWrFmT8/rOO+9c9FoAAAAAAKAUnnvuuRrv/exnP4vmYOutt865DmbevHklqQeAdBKgAwAAKIBbb701E56rT3CuvqfO1Rasq6s9J9sBANDadOnSJZYsWVLtep8+fUpSDwAAtFbPPvtstESjRo0qdQkAANBkb7zxRvnvFdeW9OzZM/bZZ59oDqrO22dPyVu6dGnJagIgfQToAAAA8mz27Nnxox/9qHzisWp4LTvRl9hyyy3j0EMPjW233Tbz+6uvvho33XRT+TMVf954442Z3xcvXhyLFi2KhQsXxnvvvRcvvfRS5n227aonyyWfKSsri3PPPTd22mmnavX26tWrgP81AACgNLp165YzQNe5c+eS1AMAAK3V/vvvX23eurlL6l23bl2pywAAgCZL1pVUlF2DcuCBBzabcXqyIV4uAnQA5JMAHQAAQJ5ddNFFsWzZskpBuUTFQN3uu+8eV1xxRYwcObLSZ9u1a5cJ0OUyevToGvucMmVKPPTQQ3HdddfFhx9+WGmSM/uH/quvvjr++7//O3784x/n4VsCAEDz1rdv35gzZ061BQCrVq0qWU0AANCaVd1sDgAAKLy5c+fmDMptt9120Vx06NAh53UBOgDyqU1eWwMAAGjlZs6cGbfffnu1ycdsmC55/epXv4qXX365WniuKZKT5S644IJ4//334+67786caFc1vJcsFE5OoTvjjDMsVAAAIPUGDRqU8/q8efOKXgsAAPC/89Qt4QUAAGmyfPnynNf79OkTzcWKFStyXncqNAD5JEAHAACQR9dff315OC37MxueS37+7ne/iwsvvLBg/bdp0yaOPfbYmDRpUubEuqohuuT9n/70pzj55JMLVgMAADQHu+66a87r06ZNK3otAADA/86ZN/cXAACkzerVq3Ne79atWzQXCxcuzHm9U6dORa8FgPQSoAMAAMij5PS3ijvUVgzPHX300XH22WcXpY6uXbvGTTfdFDfccEPOeu6444649NJLi1ILAACUwiGHHFLpfXYs/MILL5SsJgAAAAAAKKaaQmiLFi2K5qKmWjp37lz0WgBILwE6AACAPJk8eXJ8+OGHmd+zobmKgbZrr7226DV9//vfj2uuuSbnSXS//OUv46WXXip6TQAAUAyDBw+OAQMGVLv+ySefxPjx40tSEwAAtGbJ3HQpXg2pCQAA0qZLly45ry9YsCCai48++qjS++waly233LJEFQGQRgJ0AAAAefLiiy9Wu5YN0p1wwgmxxRZblKSu008/PUaPHl0tRLdhw4bMveQnAACkUTLerTgOzvrDH/5QknoAAKC1SsblpXglagvH1fQZAABIiySElmucm90gurmst6k6Zk/e9+vXr2Q1AZA+ZaUuAAAAIC0mTpxY471/+7d/i1L6/e9/Hw8++GB8/vnn1U7Nu//+++Ob3/xmyWoDAIBCnsj8q1/9qnwcnD2N+fbbb4/zzjsvvvzlL5e6RAAASL2nnnqqKP2sXr06c4rGwoULY86cOfHCCy/Ea6+9FqtWrcrcr7ggN7v53VlnnRVHH310UeoDAIBS2G677eLNN98sf5+dJ3/++eejOXj33Xfj008/La+r4rj9i1/8YklrAyBdBOgAAADyZMaMGeW/V5zQ6969e+yxxx5Nbr/qRGFD9OjRI3784x/HZZddVq2NK6+8UoAOAIBU6tmzZ/znf/5n/PCHP6w0Dl6/fn2cfPLJmV1tu3btWtIaAQAg7fbbb7+S9b127dr45z//Gb/97W/jueeeK/93QXZx7tVXX515n9xv06ZNyeoEAIBCGTx4cM51J3Pnzo333nsvtt9++xJWF/H444/XeG/48OFFrQWAdDPzAwAAkCfJjra5drAdOnRoXtpft25dkz4/ZsyYSvVlFwgku/B+9tlneagQAACan9NOOy0OOuigzNg3kR0Tv/3225mNJFasWFHiCgEAgEJp165dHHnkkfHMM89k5sIHDBhQ6d8G2RDdMcccE2vWrCl1uQAAkHf77LNPjfduv/32KLVrrrmmxs2k99xzz6LXA0B6CdABAADkyfz583Ne32WXXerdRm0nzK1cuTKaom/fvjFkyJDyxQFZyft//etfTWobAACaq2SM/be//S0GDRpUbaHsE088ESNHjoxJkyaVukwAAKDA9t5775g4cWJ85zvfqfZvgwcffDCOOuqo2LBhQ6nLBACAvBoxYkS0bds283uuE5lXr15dstqS06KnTJlSaZPq7Fg9OTmvf//+JasNgPQRoAMAAMiTmgJum222Wb3bKCsrq/He8uXLo6lq2p3r5ZdfbnLbAADQXPXo0SOeeuqp+PKXv1xtoWyygHb33XePn/3sZ7Fo0aJSlwoAABRQly5d4tZbb41vfetb1f5t8Oijj8aPf/zjUpcIAAB5temmm8aBBx5YPv6tuOlyslH073//+5LUlZwAffHFF+e8l4zRjz766KLXBEC6CdABAADkSU27cvXs2bPebbRv377GewsXLoym2n777XNenzZtWpPbBgCA5mzLLbeMZ599No477rhKC2UTa9eujcsvvzy23nrrOOGEE2LcuHGxZMmSElcMAAAUys033xyjRo2qFqL7wx/+EP/4xz9KXR4AAOTVSSedVO1adgx8ySWXxKuvvlr0ms4777x44403yuvIztdna/ve975X9JoASLeajzYAAACgwTvXLlu2rNr1jh071ruNzp0713jv008/jSFDhkRTVA3zZSciZ86c2aR2AQCgOUpOlqjqiCOOyIzbH3744cx4OPtH+WRcnGyKcc8992Re2Q0ohg0bFv369cucYte9e/fMq02bwu5P+N3vfreg7QMAQGtXVlaWCcvtsssusWHDhkrz5WeccUZ85StfiU6dOpW6TAAAyIvkBOaLLrooPvnkk0qBteSVbDB3/PHHxzPPPJOZCy/W3P11111XXktWtq5DDz00BgwYUJRaAGg9BOgAAADyJFlImytA15CTK3r16lXjvdmzZ0ehLF68uGBtAwBAqZxyyimVdq2tquJpExWDdFnJRhPvvfdeFJsAHQAAFN6OO+6Y+TfDX/7yl0r/bvj444/jz3/+c5x11lklrQ8AAPKlffv28ZOf/CTOP//8SnPh2bnxDz74IPbee+8YN25c7LrrrgWt5Zprrolzzz231rn7//t//29BawCgdSrsFqkAAACtSLdu3XJe//zzz+vdRu/evWu8l49T4mqqJVfwDwAA0iJZCFD1let+IrtgIPvK9dlCvgAAgOI5/fTTK73P/hvg97//fclqAgCAQkg2iEg2kUhU3VAueT937tzYd99945e//GWsWrUq7/3PmjUrjjrqqDj77LNj/fr11frPBvpOPPHE2GOPPfLePwAI0AEAAORJnz59ci54bcjpbttuu220afO//1SrutvWG2+80eQaP/zww5zXa9vZCwAAWrqqobiaxr+5wmy5PluoFwAAUFy77bZbZm4/1+LeCRMmlKQmAAAohLKysrjhhhuibdu2NYboVqxYkTn9bdCgQXHFFVfE7Nmzm9zviy++GN/73vcy4b2HHnqoPChXsd+sZGxuMwsACqWsYC0DAAC0MskE4rPPPlvt+scff1zvNtq3bx/9+vWLDz74oPxaduLwpZdeanKNNbWx2WabNbltAABorhp7slsxT4QToAMAgNI44IAD4q677qo2Jn/44Ydj2LBhJasLAADybcSIEXH55ZfH+eefX2n8mw21ZdenJJszX3DBBZnX8OHDMxtP7LTTTjFjxowa237qqadi5cqVMW/evMyGFG+++WZmjcpnn31W3keiYr8VQ3xJsO/mm2+O3r17F/C/AACtmQAdAABAngwePLjS++zEYjIp2BBDhw7NTCZmP5+dMFy0aFG88MILsc8++zSqviSU99Zbb1WbBE1svvnmjWoTAAAAAABasm222Sbn9YkTJxa9FgAAKLRzzz03Zs6cGdddd12lAFvFEF32WuLVV1+N1157rVIb2XsVfx500EG1blJXtd2KzyT3kpPnDj300Dx/WwD4f9pU+B0AAIA8BuiykjDcsmXL6t3OXnvtVeO9G2+8MRrr2muvjQ0bNuScpPzCF77Q6HYBAKC5y/7Rvzm/AACA0ujTp0+l99nN7aZMmVKymgAAoJCuueaaOO2006qdCpcN0mWvVb1eNfxWUcVnqgbycoXnKs6LX3bZZXHmmWcW6NsCwP8SoAMAAMiTYcOGlf9ecdIv+X3SpEn1bueQQw6pdi37B/vbbrstJk+e3ODakpPnrrrqqhoX5u67774NbhMAAFqCXH+0b64vAACg+Lp165bz+vz584teCwAAFMsf/vCH+PWvf12+jqSmwFx9N4OraeO4qnPg2XvJ+zZt2sT1118fF198cVG+MwCtW1mpCwAAAEiLLbbYInbccceYOnVqtUnDJ554IkaMGFGvdr785S/HtttuG7Nnzy6fNMxOIK5duza++c1vxquvvho9evSoV3sfffRRHHvssbFmzZry9qo64IAD6vktAQCg5Xj//fdLXQIAANDMLViwIOf1pUuXFr0WAAAopp/85Cex++67x5gxYzLz6blOi6vv5m91PVdxHU3ybP/+/eOvf/1r7L333k36DgBQXwJ0AAAAeZQE0d55551qE3/3339//PznP693O9/73vfi0ksvrTQxmZ2ofPfdd2P48OExduzY2GuvvWpt55FHHonTTjstPvzww0rhuYr19erVK/bYY49GfFsAAGjeko0pAAAAavPpp5/mvL5hw4ai1wIAAMW23377xeTJk+M///M/46qrroply5ZVO22uviG6qqpuPp200759+zjrrLPikksuqfE0aAAohE02Nvb/0QAAAKjm3nvvjeOOO67SyXHZn7NmzYq+ffvWq51PPvkktt9++1i9enXmfdXgW/K+TZs2mVPtkv522mmn2PL/a+8+oKWq7v2B/7g0QaoIiFQrYMVOFETsxi55tlhiivGpsT17T1RssUWjJpaImBhb7L0hVQRFbNilKEiX3uG/znnv3v9wuQ2YuWX4fNY6a2bOPrP3Ppfr8tyZ/T2/jTaK2rVrx5QpU9IKdU8//XQMGzZspfcWf548XnvttXHJJZfk6CcCAAAAAADV1w477BCjR49eZYFws2bNYsaMGVU6NwAAqEzTpk1LQ3T/+Mc/4ocffigxBLe6CtepNGrUKE4++eQ477zzYpNNNsnKfAFgdQjQAQAAZNGcOXOiVatWsXjx4qJ9hUG1W2+9Nc4+++wK93XBBRfELbfcslLwLVG8Kl1ZMo8pKYTXtGnTGD9+vLt6AQAAAACwzkk+H+/UqdNKN51LJM87d+4cY8aMqeopAgBApUuqMb/xxhvxwgsvxCuvvBJff/31GvWTrEnZZ5994sgjj4zDDjvM2hQAqpQAHQAAQJYdddRR8cwzz6xyt9qkotxXX31V4btzzZs3L7bddtsYN25cUR+FiofiSlPScZkLAZK7hp100kmreYYAAAAAAFDz/e53v4sHHnhgpc/NCx8POuigdMEwAACs62bOnBmjRo2Kzz//PCZMmBATJ05MbzC9YMGCWLJkSdSvXz8aNmwYLVq0iA4dOqTrY5JKz8lNKQCguhCgAwAAyLLHH388jj322BKDcklbnz59KtzXu+++G3vvvXcsWrSo1BBdWYr/yZf5nlNPPTXuueeeCs8FAAAAAADyxcCBA9PP3ws/Ry8eoLviiivi6quvruppAgAAAJAFBdnoBAAAgP/v0EMPTe+slXzJXnz785//vFp9de/ePR599NGoV69e+jr50j6zqlx5W6bM9yV3zv3LX/6StXMGAAAAAICaYujQoeln+ZnhueKScB0AAFQXZ5xxRjzxxBMxderUqp4KANRIKtABAADkwJIlS2L58uUlttWvX3+N7oR7/PHHx8SJE1epPFfWn3WZxxYed+aZZ8att94aderUWe15AAAAAABATbVw4cK47rrr0pvdLVq0qKjiXPGb0G288cbx/fffV/FsAQDg/ysoKCi6Zu3SpUvstddeRVvLli2renoAUO0J0AEAANQQM2fOjCuuuCLuv//+WLx4cbqveJiuJIV/9m277bZx2223uWsuAAAAAADrjORmdyNHjoxHH300HnvssZg8eXL6uXlmYC5RGKZLHq+55pq49NJLq3jmAACwaoCu+A0gEgJ1AFA+AToAAIAa5scff4z+/fvHs88+m37pXximK8lGG20U+++/f5xwwgmx7777Vuo8AQAAAADgT3/6U6WNlSyDmj9/fsyePTtmzZoVn3/+eYwZM6boc/SSqs0Vf518rv7FF19E48aNK23eAACwOhXoSlr+L1AHAGUToAMAAKjBki/9v/766xg3blzMmTMnfd2gQYP0w8/NNtss2rZtW9VTBAAAAABgHZa50LeyFV8WlTmPzLbM6nNPPvlkHHnkkZU6TwAAWJ0KdMWvr8sL1HXt2nWlQN2GG25YKXMGgOpEgA4AAAAAAAAAAMj5Qt+qUN7i4swqHhdffHH07du3UucHAABre10tUAcA5ROgAwAAAAAAKGbp0qUxZsyY+Pjjj9OKzxMnToypU6fGggULYuHChekx6623XloBulWrVtGmTZvo2LFjbLvttunigzp16lT1KQAAQKzrFegquoA4ab/wwgvjhhtuqOSZAQBAxazOjSkE6gBgVQJ0AAAAAAAAEfHJJ5/E008/HW+88UYMHz48lixZskb91KtXL7p37x777rtvHHnkkbHVVltlfa4AAFBTVHUFuvKCc40bN4677747fvnLX1bpvAAAYE1uTCFQBwAVI0AHAAAAAACs05XmHnroobjnnnviww8/LNq/tl+fZC422HHHHeOMM86IE088MWrXrr1W/QIAQE1T2QG6ilS7S+ZSt27dOOGEE+K6666LjTbaqFLmBgAAa6pHjx4xcuTIWLx4cdG+ygrUJTeJywzUtWjRYg3OAACqlgAdAAAAAACwTurXr19ceeWV8f3336+yQKAii27LUlJ/7du3TxfnqmwBAMC6pLRKGZWhpGVRyeLfo48+On7zm99E27Ztq2ReAACwJhYuXBjDhg2Ld955JwYMGBDDhw+PRYsWFbUL1AFA6QToAAAAAACAdcqECRPipJNOioEDB660EKAiiwQqoqx+kra99947rXpnsS4AAOtKgK4y1alTJ+rXrx9NmzaNVq1aRYcOHaJz587RrVu36NmzZ7Rr165S5wMAALmShOeSEF1hoO7dd9+NBQsWFLUL1AHA/ydABwAAAAAArDPeeOONOP7442P69Onpl/6ZX/Ln6iuTksZo2bJlPPbYY+liAgAAAAAAWFtLliyJ9957Lw3UJdvQoUNj3rx5VRao6927d/Tq1UugDoBqQYAOAAAAAABYJ/znP/9Jw3OLFy9e6Qv90r4qKWkxQUWU119he7169eLxxx+Pww47bI3GAQAAAACA0ixdujRGjhxZFKgbMmRIzJkzp1IDdcljZoU6gToAqooAHQAAwDpiwoQJMWrUqBLbLNgFACDfvfzyy3H44YenCwbKCs5V5Iv/bC0cSNrq1q0bzz//fOy///6rNQ4AAAAAAKyOZcuWxQcffFAUqBs8eHDMmjWrqF2gDoB8JkAHAABQzHnnnVfi/mOPPTZ23XXXqKkeeOCBOPXUU1fZn3w4mSwiBgCAfPXFF1/EbrvtFrNnzy41PJf5BX9hW6dOnWKHHXZIty222CKaNm1atCWShQWF29dff53esCLZvvvuu1X6LW28ZH+zZs3ivffei8033zxnPwMAAAAAAMiUfD6dfKZdGKgbNGhQzJw5s6hdoA6AfCJABwAAUExBQUGJHwLed9998etf/zorYzz33HMl7k8W5rZv3z5yFaD73e9+t8r+5FyTu4wBAEA+Sr4G6d69e4wYMaLEMFvxfV27do0TTzwxTjjhhGjXrt0ajTlp0qTo379/PPLII/HJJ5+UGM4rPnYS8Bs2bNganiUAAAAAAKyd5LPqjz76qChQN3DgwJg+ffpaBeoq+p7igbrevXvHHXfcsYZnAgCrEqADAAAoJUBXfGFrNgN0lRHSKy1AV3zxrgAdAAD57K677oqzzjqr3PBc8oX8X/7yl9h7772zOn6ywCAZP1l0UNocCq/L77zzzjj99NOzOj4AAAAAAKypTz/9NAYMGFAUqJsyZUqlBeqsZQEgmwqy2hsAAEAeST6MK+mDu2xKPgQs3CqTe6kAALAuWLRoUfTt23eV4FrhtX7yul69enHLLbfE6NGjsx4fOoL5AABMQUlEQVSeS+y5557xwQcfpHfKXW+99YrGz1Q4l+uuuy4WL16c9TkAAAAAAMCa2HrrreOMM86Ixx9/PH788cf47LPP4u67745jjjkmWrduvcq6l8LP30tbc5N5fEXfAwDZIEAHAABQhSEzH/4BAEDuPPTQQ+kX+onML+ILX2+wwQbpXXPPPffcqF27ds7mkVSg/sMf/pDenbdly5arzKNQMteHH344Z/MAAAAAAIC10aVLlzjttNPi0UcfjYkTJ8YXX3wRf//73+P444+PjTfeOCuBOgDIBQE6AACAKuTDPwAAyJ3+/fuv9DoztNaoUaN44403Ytddd620+ey0007x2muvpWNnzqd46A8AAAAAAGqCLbbYIn7729/GI488EhMmTIivv/46HnjggTjxxBOjffv2pQbqAKCyCdABAAAAAAB5J7nz7bBhw1b5Ij75kj7Zd/fdd0e3bt0qfV7bbbdd3HvvvSvdTKNwTsljMudk7gAAAAAAUNNsuummccopp0S/fv1i7Nix8d1336U3jkv2derUSaU5AKqMAB0AAAAAAJB3Bg4cWPQlfGZALXns1atXnHDCCVU2t+OOOy569+5dNJ/i3nnnnSqZFwAAAAAAZFPHjh3jpJNOSqvSJZ/b9+3bN1q0aKESHQCVrk7lDwkAAAAAAJBbQ4cOLbXt4osvrtS5lDaHt99+u8S2pApdErIDAAD+V3LziR9//DGt1jx16tRYsGBBLFy4MG1bb731okGDBtGqVato06ZNbLTRRhbiAgBANTBhwoT0hnHJNmDAgPj222+L2lShA6CyCdABAAAAAAB558svvyx6nrl4tmXLlrH//vtHVdtvv/3SBb7J4t/ii3sz5w4AAOui77//Pl5//fUYNGhQjB49OsaMGROLFi2q0Hvr168fXbt2je233z6tPr3vvvtG27Ztcz5nAABY140bN64oLJc8jh07tqhNYA6AqiZABwAAAAAA5J3vvvtupWBa8uV88nqvvfaK6iKZy+OPP140z+QxmWfmXXgBAGBd8dNPP0X//v2jX79+MWrUqDVeaJtUpkve/+GHH6Z9JXbaaaf41a9+Fb/85S+jadOmWZ87AACsq5/DZwbmxo8fX+p1fPEbyZXXDgDZJkAHAAAAAADknenTp5e4P6lEUV1stdVWqzV3AADIRzNmzIibbrop7rnnnpg7d26JgbnVXUyb9JHZz8iRI+P999+PSy+9NM4444y44IILolmzZlmZPwAArCu++eablQJzSeXo1QnEZR5TXnu9evWyOHMAEKADAAAAAADy0Lx580rcv+GGG0Z10aJFixL3z58/v9LnAgAAVeGhhx6KCy+8ML2JxOospi1L8t6Sqlsk2+zZs+OGG26I+++/P2655ZY44YQTsnAWAACQn7766quisFyyTZw4ca0Cc2VVoWvQoEF079499txzz3T72c9+luWzAWBdJ0AHAAAAAADknaVLl5a4v27dulFd1KlT8tc0y5Ytq/S5AABAZd/w4pRTTomnnnqqaNFs5mLaioblSlJeBbukferUqXHyySfHyy+/nIbpksW6AACwrvviiy9WCsz9+OOPOQvMNWnSJPbYY4+iwNwuu+xS6mfmAJAN/i8DAAAAAADknfXXXz/mzJmzyv5Zs2ZFdVHS/BIW7wIAkM+mTJkS++23X3zyySfpAtqKBOdKWpxbluL9ZIb0CvtK9v373/+OMWPGxGuvvVatqlUDAEBl+Oyzz4rCcsmWXKvnKjCXXG/37NmzKDDXrVu31b7OB4C1IUAHAAAAAADkncaNG5cYUPvmm2+iuihtLsncAQAgHyULcnv37p2G1hKZYbbiylugW5LC95QWyisepEtef/jhh+mc3n77bSE6AADyWnITiyQol1SZGzhwYEybNm2NAnMlXXcX76Ndu3YrBea6du2a9fMBgNUhQAcAAAAAAOSdDh06xA8//LDKwtl33303qov33ntvpdeF1TeSuQMAQL5ZsmRJ9OnTJw3PlRacK20BbrJ/k002iS222CKaNm1atBVWmS7cvv766/j2229LrDiX2V9me/L8008/jV/84hfx5ptvRu3atXP6cwAAgMry0UcfFQXmBg0aFNOnT89ZYG6zzTYrCsslW3L9DgDViQAdAAAAAACQdzbddNMYNmzYSsG05PHjjz+OsWPHRqdOnap0fhMmTEgrXZS0KCFZaAAAAPnmoosuiiFDhpQbnivc37lz5zjhhBPSqhXdunWLJk2aVGicpBJ1cq2djPXII4/EZ599VtR/4d8FhTL/VkgWFF988cVx8803Z+2cAQCgMiXXwUlYLgnNJde3M2fOzFpgLvP9yf6tttpqpcBcmzZtcnJOAJAtAnQAAAAAAEDe2WmnneKf//xniW1333133HTTTVGV/vrXv660WDdzIUIydwAAyCcjRoyIv/zlLyWG5zL3Jc+T0NyZZ54Zu+666xqN1bhx4zR0l2xJIO6DDz6Iu+66K/r161c0XkmLh5N9t99+exx77LGuyQEAqPaS69dRo0atFJhLqjJntmcrMJdUaU5ualEYlkuutTfYYIOcnBcA5IoAHQAAAAAAkHeSL/CLK1wUmyyePf3006usCt348ePjzjvvLHHBQmlzBwCAmuz888+P5cuXrxJeywzP7bDDDul18u67757VsXfcccd48MEH47TTTkuDeSNHjlxpHpk3tFi2bFk617fffjurcwAAgLWVXE8nN4coDMwNHjw4Zs+enZPAXL169WKXXXYpCsztscce0ahRo5ycFwBUFgE6AAAAAAAg7ySLZNu0aRM//vjjKlXeFi5cGMcdd1wMHDgw6tatW6nzWrp0afzyl7+MBQsWlFh9LpmzahcAAOSTZGFvUg2jpPBc4etzzjkn/vznP0dBQUHO5pFUtBs+fHhcdNFF6VglheiSx+TvhCFDhqSLhAEAoLpo3rx5zJ07NyeBuYYNG8bPfvazosBc9+7do379+jk5DwCoKgJ0AAAAAABA3kkWAhx99NFxxx13rFTVonBR7HvvvRfHHHNMPP7441GnTp1Ku0PwiSeemC7GLb54uHBuxx57bKXMBQAAKsvf//73VfZl3kziqquuiiuvvLJS5pKMd9NNN8UGG2wQl1566SrX5ZlzFqADAKA6mTNnTtYCc82aNUuvdwsDc8lN3Srrc3IAqCr+TwcAAAAAAOSlM844I+666640uFa4MDYzRPfss8/GfvvtF//+97+jdevWOZ3LtGnT4vjjj48333xzpUULmc9r164d//3f/53TeQAAQGVKqj8/88wzq1wDF16XJ9WZKys8l+niiy+OL774Ivr167dSiK7weTLnRYsWqboBAEC1Ujw0V7zCc2mBuVatWkXPnj2LAnPbbbddiQE8AMhnBVU9AQAAAAAAgFzYfPPN0yp0xStKZIbo3nnnnejcuXPcfvvtsWzZsqzPIRkjCfElYyThucK5lFR9LqmIt9lmm2V9DgAAUFWGDRsWc+fOXem6N3MR7913311lc7vzzjtjo402Sp8Xr0SXzDmpHA0AANVN4Y3iSvrcu3Br165derOKv/3tbzFmzJj48ccf44knnog//OEPsf322wvPAbBOEqADAAAAAADy1k033RSNGzdOnxe/+27h69mzZ8f//M//xDbbbJMG6aZMmbLW406dOjX+8pe/pHfyPfvss2PmzJkrBfeKzyeZ44033rjW4wIAQHUyaNCgVfYVXhcnVeAaNWoUVSUZO5lD8YXHhQToAACo7go/Y04ef/azn6UVlr/77rsYN25c9O/fP373u9+lN3cDACLqVPUEAAAAAAAAcqVt27Zx8803x2mnnbbKXXUzQ3TJ8y+++CIN0l144YXRu3fv6NGjR+ywww7RrVu39I69ZZk4cWKMGjUq3ZKFtkm1uaSiXfGwXGnV8G655ZbYeOONs3z2AABQtT7++OOi55nX43Xr1o1TTjklqloyh+T6f8mSJav8vTB69OgqmxcAAFRE5k3b3n333fj666+jZ8+esddee8Wee+6Z3uANAPhfAnQAAAAAAEBeO/XUU+O9996LBx98cKUKcJkLDDIDbkuXLo033ngj3TIX+DZt2jSaNGmSboWV6wq3xYsXrzRm5hglhecK55E8/va3v43f/OY3OfwJAABA1fj2229Xel14Dbz77rsXXVdXpaQS9B577BFvv/32KhWri88dAACqo8LPnZPHqVOnxtNPP51uiWbNmqU3iuvVq1caqNtxxx2joKCgimcMAFVDgA4AAAAAAMh799xzT0ybNi2ee+65VQJtmVXiSqsUlwTkksUHyVYRxRffltZ25JFHxt13373G5wUAANVZUqm5eGW3RFLpubpI5pIE6Irf7CKZOwAAVDfFbxKXuT+R2TZz5sx44YUX0i3RqFGj9GYWSaAu2XbZZZeoU0ecAIB1g//jAQAAAAAAeS+pIPfkk0/GySefHI8++mhRWK54NbriQbqSZB5XlvIWMZx44olpVbzatWuv8XkBAEB1Nm/evBL3t2/fPqqL0uZS2twBAKCqFf9sOvm8ubDac0lthebMmROvvfZauiUaNGgQ3bt3L6pQlzyvX79+JZ0FAFQuAToAAAAAAGCdkNxJ95///GfstNNOcckll8TSpUtLvCtvWcG34s/Lek9J70+Oq1evXtx8883xhz/8Ya3OBwAAqrsFCxaUuH/99deP6qJhw4Yl7l+4cGGlzwUAAEpz4YUXxsCBA2PkyJHpZ9uFygrNlReomz9/flqNubAic/LZdVKVrrBCXVKtrrTrZQCoaQToAAAAKmjo0KHpgtuaOkbSNwAAEHHeeefFAQccEKeddloMGTJklUUEJYXhygvIlaSkPpO7+N57773RpUuXNZ4/AADUFEn1ipJCdKUF66pCaXNReQMAgOrkhhtuKAq9Jes/BgwYEO+8806MGDEiFi9enJVA3aJFi9LPzJOtb9++6fqVHXfcMf1cOwnU9ejRI5o0aZLjMwWA3Ki1Yk2+8QUAAMhjBQUF6QeGxf9cKqnKxJoq7U+xbI5R3riF55g8Llu2LKfjAgBAdfXcc8/Ftddem961t7xr8jW5ji98T/fu3eOyyy6Lgw8+eK3nDAAANUXr1q1j2rRpRa8LP5M+//zz48Ybb4zqIKlOncyl+A0wWrZsGZMnT67SuQEAQHmSysnDhg0rCtQNHz48DcKV9fl1ZqCutLaS3p+sp9luu+2KKtT17NkzNthggyyfEQDkhgAdAABABQN0+UaADgAA/r8PPvgg+vfvH08//XSMHz9+jW50UfxviE6dOsWRRx4ZJ554YnTr1i2r8wUAgJogWVz7ySefFF1TF34mvf/++8fLL78c1UFyk4tkLplzTGy99dbx8ccfV/HsAABg9SThuSREl4TpklDdu+++u1LV5bUN1GUelzxutdVWRRXqkq1Vq1ZZPiMAyA4BOgAAgGJUoAMAgHXbV199FYMGDYrRo0eni33HjRsXkyZNWmmRQaYGDRpEmzZt0sDcNttsE9tvv326YGCzzTar9LkDAEB1csQRR6RVn4tXd2vYsGFMnz496tevX6XzW7x4cbRo0SLmz5+/0vyS+R566KHxzDPPVOn8AABgbS1ZsiTee++9okDd0KFDV7r+zWagLrHFFlsUhemSz8nbtWuXxbMBgDUnQAcAAFCMCnQAAEBJkkUFSYhu4cKF6ev11lsvDc8li38BAIBVXXrppXHDDTes9Hl04eODDz4YJ598cpXO75FHHomTTjqpxPldfPHFcd1111Xp/AAAINuWLl0aI0eOTAN1yTZkyJCYM2dOzgJ1yY3nMivUbbLJJlk8GwCoOAE6AACAYgToAAAAAABg7b300ktxyCGHrPR5dCJ5vvnmm8enn34adevWrZK5JZ+LJxWkv/zyy6I5Zc4zqZx38MEHV8ncAACgMq+LP/jgg6JA3eDBg2PWrFlrHKjLbC+pj7Zt2xYF6pLHzp07Z/FsAKB0AnQAAAClBOjWBQJ0AAAAAADkyuzZs6NVq1axZMmSEkNqF110UfTt27dK5vbHP/4x3UoK99WvXz8mT54cTZo0qZK5AQBAVVm+fHl8+OGHRYG6QYMGxcyZM4vay6tCV5EqdZnHJH8v9OzZs6hCXXKTCwDIBQE6AACAYgToAAAAAAAgO4488sh49tlnSwyqJZ/H9+/fP4477rhKndNTTz0VxxxzTNFC3uLBvsMOOyyefvrpSp0TAABUR8k18kcffVQUqBs4cGBMnz49Z4G65s2bFwXqzjnnnCyeCQDrOgE6AACAYjp16rTOBOgKfffdd1U9BQAAAAAA8tBzzz0XRxxxRFFALZEZoqtTp07cddddceqpp1bKfB5++OF0rMWLF68yp8IAXRL4O+SQQyplPgAAUNN88sknKwXqpkyZktVAXeFxbgYNQDYJ0AEAAAAAAAAAADmz7bbbxmeffVbi4tnC0NovfvGLuOWWW6Jdu3Y5mcOPP/4Y559/fjz66KMrVZwrPo9tttkmRo8enZM5AABAPvr8889jwIABRaG65Np7bQN1AnQAZJsAHQAAAAAAAAAAkDMvvvhiHHrooSuF1opXokueN2zYMC6++OK0QlzLli2zMvaMGTPivvvui759+8bcuXOLxioct3AehftfeOGFOOigg7IyNgAArIu++uqrlQJ1P/zww0rtxf8uKKlNgA6AbBOgAwAAAAAAAAAAcurYY4+Nxx9/vMwQXeHrOnXqxP777x/HH3989OjRI9q3b79aY33//fcxZMiQ+Ne//hWvvPJKLF26dKX+i49XuED3mGOOSd8DAABkz7fffpsG6QpDdePHjy81RCdAB0CuCNABAAAAAAAAAAA5NWvWrNhll13im2++SV8XX7JUUrCtUPPmzaNbt26x+eabR9OmTaNJkybplpg9e3bRlvQ9atSotOpcodKCc8XH2HLLLWP48OFF/QIAANkzefLkNDz39ttvx5NPPhnTp08vMUQnQAdArgjQAQAAAAAAAAAAOff5559Hr169Ytq0aWWG6MprK0tF+8wM1LVu3ToGDhwYW2yxxWqdDwAAULJJkyYVVZxLti+//HKl9tIiDAJ0AOSKAB0AAAAAAAAAAFApPv3009h3331jypQpqxWWq+gSp4q8NzM816ZNm3jzzTejS5cuFT4HAABgZT/88ENRYC55LKw8nViduIIAHQC5IkAHAAAAAABUW+PHj491TYcOHap6CgAAkFMTJkyIPn36xMiRI8usOre61edWp5/kmO7du8cTTzwRbdu2Xa3+AQBgXZdc02cG5r777rus3CBDgA6AXBGgAwAAAAAAqq2CgoLVXixbkyXnunTp0qqeBgAA5NzixYvj6quvjltuuSWWLFlSoSDdmired7169eLCCy+MK664IurWrZvVsQAAIB+NHTs2DcsVBubGjRuX9YrSmZWiBegAyDYBOgAAAAAAoFoH6NYlFgUAALCuGTNmTFx22WXx7LPPFi2ULW51lzeV1key/6ijjoprr702OnfuvFbzBgCAfPbtt98WheWSx6TiXK4CcyW9z2flAGSbAB0AAAAAAFBtrUsV6NxVFwCAddlnn30W99xzTzz22GMxbdq0ov1r+vdA5pKoli1bxnHHHRennXZadOnSJSvzBQCAfPL111+vFJj74YcfKjUwl+jYsWPstddeRVvyGgCyRYAOAAAAAACo9gG6fP86o/AcBegAAFjXLV26NAYPHhyvv/56DBo0KD766KOYPXv2avXRtGnT2G677WLPPfeM/fbbL/bYY4+oXbt2zuYMAAA1zZdfflkUlku2SZMmFbUJzAGQjwToAAAAAACAakuADgAAmDBhQowbNy4mTpyYVqdbsGBBLFy4MG1bb731okGDBmmVuTZt2kSnTp2iXbt2VT1lAACoVj7//POVAnOTJ08uahOYA2BdIEAHAAAAAABU+wBdPijrKxkBOgAAAAAAsuWzzz5bKTA3derUSg/MJTe36NWrl8AcANVCnaqeAAAAAAAAQD5zL0MAAAAAAHLp448/ToNySWhu4MCBMX369CoJzGVWmOvQocManAkA5IYAHQAAAAAAUG0lX7DnQwW65cuXx4QJE4oqzQEAAAAAwJoaPXp0UWBu0KBBMWPGjKI2gTkAWJUAHQAAAAAAUG2NHTs2arpnn302Lr/88qqeBgAAAAAANdSoUaNWCsz99NNPRW0CcwBQvlor3OYUAAAAAAAg65KFDJdeemkMHz48fV3WVzKFlemSx2XLllXiLAEAAAAAqO4KCgqKAm6VFZjbZJNN0qBcr169BOYAqPFUoAMAAAAAAMii999/Pw3OvfHGGxVaqFDSIgUAAAAAACiu8EZsJe3PVmCucGvfvn0WZgwA1YMAHQAAAAAAQBZ88cUXcfnll8d//vOflRYelHdX4ML9PXv2jOuvv76SZw0AAAAAQE1R2ufNZR2bSWAOgHWVAB0AAAAAAMBamDBhQlx99dXRv3//WLZsWYWDc4Vt3bp1i759+8aBBx5YyTMHAID8kFxXT5w4MaZOnRoLFiyI2rVrx/rrrx+tW7eODTfcsKqnBwAAWVNWcE5gDgBKJ0AHAAAAAACwBqZNmxbXXntt/O1vf4vFixevdnBuiy22iGuuuSaOPvroSp45AADUbMn19FtvvRXPPfdcDBkyJD7++ONYunRpicc2atQott9+++jVq1ccccQRsdNOO1X6fAEAIBfKC8xtuummRWG55HpYYA6AdVmtFRWp3woAAAAAAEBqzpw5cfPNN8ftt98e8+bNW+3gXNu2beOqq66KU045Ja2MAQAAVEwSkrvnnnvitttui3HjxqX7KrL0KfOavGvXrnH55ZfHsccem9O5AgBANhUUFKxWYC7Z2rVrV8mzBIDqS4AOAAAAAACgAhYtWhR33nln3HjjjTFjxoxVgnOJzK9diu9v0aJFXHLJJXHGGWdE/fr1K3n2AABQsw0fPjxOOumk+Prrr8u8aUVJSjp+l112iX79+kXnzp1zMl8AAMhFgE5gDgDWjAAdAAAAAABAGZYtWxYPPPBAXHPNNTFx4sTVDs41atQozjvvvPif//mfaNy4cSXPHgAAsuOVV16Jl156qdT2E044IXbdddecjH3fffelN6JIrs2Ta+zyKm9kKn5s5nENGjSIf/3rX3H44YfnYNYAAJDdAJ3AHACsOQE6AAAAAACAUvz73/+OK6+8Mr755pvVDs4lVeb++7//Oy699NLYcMMNK3nmAACQXQceeGC8/vrrJbYlN40YP358NG3aNOvj3nrrrXHBBResEpxb0yVPxfuoXbt2PPzww3HcccdlZb4AAJALP/zwQ7Rt27aqpwEANZYAHQAAAAAAQDFJZY3LLrssPvroo3KDc5lthQtwTz755Ljqqquiffv2lTxzAADIvgULFsQGG2wQixcvLvFaOKm4fPPNN2d93KeeeiqOPvrolcJz2VrqlNlfvXr10nBgz549s9I3AAAAANWLAB0AAAAAAMD/GTx4cFxyySUxdOjQ9HV5VS4yF90mz/v06RPXXHNNdO7cuZJnDgAAufPyyy/HwQcfvNK1ceF1cEFBQXz99dfRqVOnrI45duzY6NatW8yePbtC4bnicyuupPdm9pvc/CK5gUYuqugBAAAAULUKqnh8AAAAAACAKjd69Oh0QXCvXr3S8FyygLZ4lYvMBbfJ/mQr3L///vvHiBEj4vHHHxeeAwAg77zyyitFzwuviwuvlw888MCsh+cSZ5xxRlF4rvj1eKbCa/PCOZW0FT+u+Lkkvv/++7jooouyfh4AAAAAVD0V6AAAAAAAgHVWUinjiiuuiCeeeGKVxbXlVZxLdO/ePa6//vo0eAcAAPkqqQSXVGcrDLNlPibX0kcddVTWA3s///nPy6w8V7wtCfHtu+++0bFjx2jZsmXMnz8/Jk6cGGPGjIk33ngjFi1aVGJ/mfvq1KmTnmeXLl2yej4AAAAAVC0BOgAAAAAAYJ2TLKT94x//GA899FAsXbq0wsG5wrZtttkmrrvuujj00EMreeYAAFC5Fi5cGE2aNIlly5attD+5Lm7atGlMnjw56tWrl9Uxd9111xg5cmRRUK+4zOv2vffeO70232233Urtb86cOdG/f/+4/PLL46efflql38xA4MknnxwPPvhgVs8HAAAAgKpVUMXjAwAAAAAAVJoZM2bEBRdcEFtssUXcf//9sWTJkqKFsoWLZosvpM1cnLvJJpukC29Hjx4tPAcAwDph1KhR6U0nEoXXyoXX0IcddljWw3NDhw4tNTyXed2euPbaa9PqcmWF5xKNGzeO008/PT799NPYc889i+ZfvO9k/2OPPZaG7AAAAADIHwJ0AAAAAABA3ps3b15cc801semmm8att94aCxYsWCk4lygrONe6dev461//Gp9//nn88pe/XGWxLQAA5KsRI0aU2nbIIYdkfby//e1vZbYXXsdff/31cemll65W323atIkXX3wxdt5555VCdJl/CyQV95566qk1nD0AAAAA1VGtFcVv1QQAAAAAAJAnkgpzd999d/Tt2zemTZtWtDA2MwBXPDiXub9Zs2Zx0UUXxVlnnRUNGjSo5NkDAEDV+9WvfhUPP/zwKtfKtWvXjunTp0eTJk2yNtaiRYuiVatWMXfu3KJxileISx4PPPDANAi3pqZMmRJdunSJWbNmFY2T2f/BBx8czz33XBbOCAAAAIDqQAU6AAAAAAAg7yQLX//xj3/EFltsEeedd15MnTq1xIpzmYG6zP1JWO6SSy6J7777Lg3QCc8BALCu+uabb1Z6XXgNvfXWW2c1PJd49dVXY86cOSuNk8gM7xUUFKRVpddGEtK7+uqrVxqjcJxk34ABA1ZpAwAAAKDmEqADAAAAAADyylNPPZUu5v3tb38b48ePLzM4l8jcX6dOnTjjjDPSRcLXXXddNG3atMrOAwAAqoPkphKZAbZE8vpnP/tZ1sd65ZVXSm0rvK4/7rjjonPnzms9VnLd365du5WCc4XmzZsXH3300VqPAQAAAED1IEAHAAAAAADkhddffz122WWXOProo+Pzzz+vUHCucKFs8njiiSfGF198EXfeeWe0bt26Cs8EAACqh8WLF8ekSZNKbNt2222zPt6bb765SlivuFNPPTUrY9WuXTuOOeaYUivNjRw5MivjAAAAAFD1BOgAAAAAAIAabfjw4bH33nvHgQceGB988EHRAtiKBOeS7fDDD4/Ro0dHv379olOnTlV2HgAAUN2MGzeu6Fq6eNCsa9euWR1r2rRp8dVXX60yVmagrkOHDtGjR4+sjZlUsytNcnMNAAAAAPJDnaqeAAAAAAAAwJr49NNP47LLLovnn38+fV1ScC5T8f29e/eOvn37xm677VbJMwcAgJohCbWVpm3btlkd69133y21rbBq9BFHHJHVMXfYYYdo2LBhLFiwYJXKd19//XVWxwIAAACg6qhABwAAAAAA1Chjx46Nk046Kbp165aG5woryRWvLFeo+P6dd945XnvttXjzzTeF5wAAoAzz5s0rta1169ZZHWvEiBHlHtOrV6+sjpn8nbDNNtuscvONxKRJk7I6FgAAAABVR4AOAAAAAACoESZPnhxnnnlmdOnSJf75z3/GsmXLKhScSyT7u3btGk8++WS89957se+++1bhmQAAQM0P0CWV27Jp5MiRq+zLrAqXPM92gC6x3XbbrTJm8vfD1KlTsz4WAAAAAFWjThWNCwAAAAAAUCGzZs2KG2+8Me68886YP39+UUguMxxX2iLbpK1jx45x9dVXx4knnhgFBe4tCAAA2QjQ1a5dO+sBusxr+eK23HLLaN68eWRbq1atStw/c+bMrI8FAAAAQNUQoAMAAAAAAKqt66+/Pv785z/HTz/9tEpwLlG84lzm/mQh7GWXXRannXZa1K1bt5JnDgAANd+SJUtKbZszZ040bdo0K+OMHz8+rfhWWP0tU2HV6R133DFyoXHjxiXuX7RoUU7GAwAAAKDyCdABAAAAAADVVhKAK1xEW1pwrng1umQR7/nnnx/nnHNOrL/++pU+ZwAAyBf169cvtW327NlZC9Al1efKk6sAXZMmTUrcL0AHAAAAkD8E6AAAAAAAgGovMyBX2v4GDRrEmWeeGRdffHE0b968SuYJAAD5JLnGLs2MGTOiffv2WRlnxIgR5R6z0047RS4UFBSUuL9OHcuqAAAAAPKFT3oAAAAAAIBqr3hwLpFZme7AAw+MK6+8MjbeeOOYM2dOutVUHTp0qOopAABAqlWrVqW2ffrpp7H99ttnZZzhw4evsi+zAnXyPFcV6ObPn1/i/saNG+dkPAAAAAAqnwAdAAAAAABQo0N1yeOrr76abjVdsjB46dKlVT0NAABItWnTptS2jz/+OCtjLFmyJA3QZQbmitt8881zFmgr7eYbAnQAAAAA+UOADgAAAAAAyMsKdQAAwNpp37591KtXLw25FQ+4DRkyJCtjDBo0KBYsWFBUYTpTYcXpn/3sZ5ErEyZMWGXMRJMmTXI2JgAAAACVq6CSxwMAAAAAAMi6ZFFtTd8AAKC6qV27dnTu3HmlYFth0G3o0KHxww8/rPUYzz33XLnH9OzZM3Jl/Pjxq+xLzrF58+Y5GxMAAACAyiVABwAAAAAA1HjJAt6avAEAQHW1yy67FD3PvHZNnv/zn/9cq76XLVsWjz/+eLk3lNhvv/0iVz755JMSx99ss81yNiYAAAAAlUuADgAAAAAAAAAAKFHv3r1X2VdYhe6mm26KmTNnrnHfzzzzTPz444/p85Kq3CW6du0a7du3j1yYMmVKTJo0aZXxE1tuuWVOxgQAAACg8gnQAQAAAAAA1V6ygDafNwAAqK4OOOCAqFOnzirBtkQSnrv00kvXqN/ly5fHNddcU+YxyXh9+vSJXBk6dGipbQJ0AAAAAPlDgA4AAAAAAAAAACjRhhtuGPvuu+9KwbnkeWGY7u9//3vcdtttq93vjTfeGB999NEqobzijjvuuMiVN954o9Q2AToAAACA/PG/t4cCAAAAAACohjp06KBCGwAAVLHTTjstXnnllVX2F4bfLrjggpg+fXpcddVVUbdu3XL7u+WWW+Lyyy8v8Vq/sM/kcY899oguXbpErrz66qtFc8icy3rrrSdABwAAAJBHaq0o6xZOAAAAAAAAAADAOm/rrbeOzz//PH2eudwoM/DWuXPnOPPMM6NPnz7RunXrld4/f/78ePPNN9PKc8OGDVupil2mzP6eeOKJOOqoo3JyPqNHj44ddthhpfEKH3v27BkDBgzIybgAAAAAVD4V6AAAAAAAAAAAgHKrxv385z9fpWpcZvgsCdj94Q9/iLPOOitatWoVbdq0Sau5TZs2LcaNGxdLlixZ5T2ZMkNsW221Vc7Cc4nHHnus1LYePXrkbFwAAAAAKp8KdAAAAAAAAAAAQLmOOeaYtCpc8fBbYaiupGVIpQXlSjo+M0D38ssvx/7775+T81i2bFl07NgxJk2aVDSPzLFffPHFOPDAA3MyNgAAAACVr6AKxgQAAAAAAAAAAGqY++67Lzp16pQ+z6xElwTPCsNnmVthW/H9hcdnygywHX/88TkLzyWef/75mDhx4krzK1RQUBB77LFHzsYGAAAAoPIJ0AEAAAAAAAAAAOVq0qRJWhluww03TF9nBs8SxYNxmUG6ktozjyvUpUuXuPvuuyOX7rrrrlX2FQbpdt5552jcuHFOxwcAAACgcgnQAQAAAAAAAAAAFdK5c+d44403om3btitVl8tUGJQrvpUks1Jdx44d46WXXsppgG3EiBHx1ltvFVW8K+7www/P2dgAAAAAVA0BOgAAAAAAAAAAoMK23XbbeO+992KfffYpCqEVBumKh+lKUvzYpI/ddtsthgwZkobocqlv375lth955JE5HR8AAACAyidABwAAAAAAAAAArJaNNtooXn/99XjwwQfT0FtmlbnMgFxJW6Lw+KTa3I033hiDBw+OjTfeOKdzTqrPPfvss0VzyJxP8phU10s2AAAAAPKLAB0AAAAAAAAAALBGfvWrX8WXX34ZTz75ZBxxxBHRpEmTonBcaVtBQUH06NEj7rzzzpgwYUJccMEFUbt27ZzP9aKLLkofS5vX4YcfnvM5AAAAAFD5aq0ovPUTAAAAAAAAAADAWli+fHmMGTMmDdX98MMPMXfu3Fi2bFk0aNAgWrVqFZtttllsv/320bBhw0qd19KlS2PIkCFlHrP11lvHhhtuWGlzAgAAAKByCNABAAAAAAAAAAAAAAAAkJcKqnoCAAAAAAAAAAAAAAAAAJALAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAABARAwYMCBq1apV6pa0AwAAAAAANYsAHQAAAAAAAAAAAAAAAAB5SYAOAAAAAAAAAAAAAAAAgLwkQAcAAAAAAAAAAAAAAABAXhKgAwAAAAAAAAAAAAAAACAvCdABAAAAAAAAAAAAAAAAkJcE6AAAAAAAAAAAAAAAAADISwJ0AAAAAAAAAAAAAAAAAOQlAToAAAAAAAAAAAAAAAAA8pIAHQAAAAAAAAAAAAAAAAB5qdaKFStWVPUkAAAAAAAAAAAAAAAAACDbVKADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADyUp2qngAAAAAAAAAA+W/evHnxxRdfxPfffx9z5syJZcuWRePGjaN58+ax5ZZbxsYbb1zVUwQAAAAAAPKQAB0AAAAAAABABS1dujSGDx8eb775Znz66afx5Zdfxo8//hhz586NBQsWRMOGDWPDDTeMzTbbLG644YbYaaed1mq8pO/BgwfHsGHD0rG+/fbbmDp1ahpGW7hwYTRo0CDWX3/9aNeuXTpmMl7Pnj1jt912i9q1a0dV++yzz+Lhhx+OV199NUaPHh0rVqwo9dhmzZrF3nvvHYcffnj06dMnPa+SzJw5M95///1S+0l+BkkoryZbsmRJ+nuW/NuPGjUqvvvuuzR4mPyezZ8/P+rVq5f+fJLftU033TS6dOkSPXr0SP/tk301wSeffBIvvPBCen7Jf0tTpkyJ2bNnx/Lly9P/jlq3bp2e28477xx77bVXulWH32kAAAAAAGqeWivK+oYCAAAAAAAAII889NBDccopp5TangSVOnXqtMr+b775Jv7617+m708CXBXx9NNPxxFHHLHac0yqs/Xr1y8effTRNDi3Jl/pbrTRRnHMMcfE2WefHZtssklUthEjRsQll1ySBg3XRIsWLeLMM8+MCy+8MA1TZRowYED07t271Pe+/fbbadhqTeSy74r44IMP4t57742nnnoqZsyYsdrvTwJm++yzT5x88snpv3+uAmdr+nNKQp/J7/Ztt92WViNcHS1btozTTjstzjnnnNhggw3WaN4AAAAAAKybCqp6AgAAAAAAAADVVRJmO/fcc6Nz585p6Kei4bk1kVSVu/LKK6NDhw7xhz/8IYYOHbpG4bnCynV33HFHbLnllvGb3/wmpk2bFpUhCUglwbekAt6ahucS06dPjz/+8Y+x3XbbxaBBgyLfjRkzJg4++OC0et599923RuG5xLJly+K1116LX/7yl+m//b/+9a+oLl555ZW0Ul4Sglvd8Fwiqbx4zTXXVLvzAgAAAACg+hOgAwAAAAAAACjBp59+Gttvv33cfvvtaTApl1544YXo2rVrGhD66aefstbv0qVL48EHH0yDS88991zk0sSJE6N79+5ppb41Df6VVPkvqaj28MMPRz5avnx5+m/erVu3eOmll7La97fffpsG6Q444ICYNGlSVJXkv52zzjorDjrooBg3btxa95eEK5PzSoKt2fo9AwAAAAAgvwnQAQAAAAAAABQzcODA2H333eO7777LebjowgsvjEMPPTQmTJiQs3GS0NERRxwR1113XU76Hzt2bPrzGj16dNb7XrJkSZx88snxj3/8I/LJ7Nmz47DDDkurDi5evDhn4yQV6Xbeeed47733orIlFQmT3+0777wz630nwdazzz476/0CAAAAAJB/BOgAAAAAAAAAMnz88cdpsCkJOOVSEpr6xS9+ETfffHNUhqRa1+WXX55u2TRjxow48MADs1JdrCy///3v45133ol8MGfOnLQy3Isvvlgp4yXVAZNKfkOGDInKklQ/PProo+Pll1/O2RhJMC+psAgAAAAAAGWpU2YrAAAAAAAAwDpk7ty5aaW2WbNmlXpM586do3v37rHppptG8+bNo27duun7kgpySQW2oUOHplXTygsX9enTJ1544YUKz61Tp06xxx57RJs2baJFixbRtGnT+Omnn2LKlCnx1VdfxYABA2LevHnl9pNUodt4443j9NNPj2yE8o4//vj44osvKnR8UqUu+fkm57H55ptHs2bN0j6Sn3dyDknA6+mnn4533313lfcmP9MTTzwx/vrXv0ZNlpxHUpWtpHMsSUFBQVpBLtk22WSTaNSoURq+nDx5cnzyySfpv3tFwp7J7+hBBx0UgwcPju222y5y7Zxzzonnn3++1PZWrVpF7969o23bttGyZcto0qRJWikxOa+kAmQSZK2Is846Kw0jJv0AAAAAAEBJBOgAAAAAAAAA/s+FF14Y33777Sr7GzduHGeeeWb85je/ic0226zMPpJQW1IVKwm5lRUuqkh4rkOHDumx//Vf/xXt2rUr89hFixbFm2++GX/6059i+PDhZR6b9LnjjjumQcC1cccdd8Srr75a7nE9evSI2267LQ2BlRamSrYkWJf8G4wYMSLOPffcVSqmJSHFbFfQq2z/8z//U6FKekmgLDn21FNPjY022qjMQF4SOrz++uvjww8/LLfy3VFHHRUjR45Mw4u58tRTT5UYdKxdu3b639Dvfve72GmnnaJWrVql9jF+/Pj0d/kf//hHLF++vNTjktDopZdeGv369cva/AEAAAAAyC+1ViS38wMAAAAAAABYBzz00ENxyimnrNZ7DjvssPj73/8erVu3zsoc+vfvHyeddFKZx6y//vpp4CyZa506q39f1Mcffzx++9vfpoGp0nTt2jUNXNWrVy/WxKRJk2LLLbdMK5uV5aqrroorr7wyraS2OpLQ1B//+Mc0RLU63n777dhrr71iTSTV3JKqaLnoO/Haa6+l1dLKc+CBB6a/q6vzO5f8vG655ZY0TJZUOCxLUsnv4YcfjjVV3s+pJMnP7Z577okuXbqs1vuSanSHHHJImb/LyX8jSfC1ffv2q9U3AAAAAADrhtX7hgIAAAAAAABgHXLBBRfEM888k7XwXBI6O/vss8s8Ztttt433338/rdK1JuG5xNFHH51WbysrUDRmzJi49dZbY00lleDKC88lIcCrr756tcNzieQ9SYAuCYXlg4ULF8bpp59e7nGnnXZavPTSS6v9O5f8vJLf1+effz7WW2+9ckOcb731VlSWE044IQ0Prm54LrHnnnvGK6+8EvXr1y/1mCQweP/996/lLAEAAAAAyFcCdAAAAAAAAAAl+M1vfhM33XRT1KpVK2t9JgGnmTNnltqeBIyS6l6dO3de67GSIF4SWkqq2ZXmz3/+c5mVvUrz/fffpyGssvz617+Oc845J9bWeeedt9pVA6ujpIrhN998U+YxxxxzTFqlbW1+55Lqdf/617/K7ePiiy+OypBUW0yq3dWtW3eN+9h9993j/PPPL/OYJ554Yo37BwAAAAAgvwnQAQAAAAAAABTToUOHuP3227Pa56effhqPPvpoqe2tWrVKK21tsMEGWRszCeQlwa3STJ8+PR566KHV7vfuu++OJUuWlNq+4YYbpuG8bEn6atGiRdRUixcvjptvvrnMY5JqgQ8++GBWxjvyyCPjzDPPLPOYESNGpAHLXNpyyy3T35VshFAvu+yyMqvyJRUVJ0yYsNbjAAAAAACQfwToAAAAAAAAAIq59957o1GjRlnt88Ybb4zly5eX2p5Uu+vYsWNk2/HHHx89evQotf2BBx5Yrf5WrFgR//znP8s85vrrr4/mzZtHtiShwqTPmur5559Pq/aV5bbbbouGDRtmbcw//elPaSizLEm1u1zq169fmRUQV0eDBg3i2GOPLfOYwYMHZ2UsAAAAAADyiwAdAAAAAAAAQIYdd9wxDjrooKz2OXPmzHjiiSdKbd95553jpJNOily5+OKLS20bPXp0fPHFFxXua/jw4TF+/PhS25PQ1q9+9avItlNOOSVatmwZNVH//v3LbO/du3f06dMnq2M2a9Ys+vbtW+YxL774YkybNi1yoVevXtG9e/es9nnccceV2Z78LgMAAAAAQHECdAAAAAAAAADFglrZ9vjjj8fChQtLbT///POjVq1akSsHH3xwtG3bttT21157rcJ9vf7662W2J1XC6tSpE9mW9HnMMcdETbNgwYJ45ZVXyjzmjDPOyMnYJ5xwQhqkK82SJUvSEF0unHvuuTkJt9arV6/U9s8//zzrYwIAAAAAUPMJ0AEAAAAAAABkhLSOP/74rPf7wgsvlNq2/vrrx6GHHhq5llQEK80777xT4X4GDBhQbmgrV0488cSoaQYNGhSLFi0qtb158+ZxyCGH5GTs+vXrx9FHH13mMW+88UbWx11vvfWyXsUxUbdu3ejSpUup7RMmTMj6mAAAAAAA1HwCdAAAAAAAAAD/Z5tttokNNtggq30uXrw43n777VLbk6BRw4YNI9f23HPPUttGjRpV4X4+/PDDUtsaNWoUO+20U+TKzjvvXCk/q2wH6MrSp0+fNOhWVaHD8ua3JnbZZZcyK8WtjbICdFOmTMnJmAAAAAAA1GwCdAAAAAAAAAD/Z8cdd8x6n5988knMmzev1PZcBs4ydezYsdS27777rsw5Fpo0aVLMmDGj1PZtt902Cgpy9zV00ncyRk0yevToMtt79OiR0/F32223MsNs48aNi1mzZmV1zN133z1ypWnTpqW2Zfs8AAAAAADIDwJ0AAAAAAAAADkM0JVX3W2rrbaKytCiRYtS21asWBE//PBDuX18++23ZbZ369Ytcq0yxsh2gLIsO+ywQ07Hr1u3bmy99dZlHvPxxx9ndcwOHTpErjRu3LjUtkWLFuVsXAAAAAAAaq46VT0BAAAAAAAAgOoiF8Gfzz//vNyA3ZQpUyLXJk+eXGZ7EqDbcsstyzxm4sSJZbZvscUWkWvlzbE6SYKJEyZMKLW9fv360bVr15zPIwnplRXkTKrQZbMSXvPmzSNXGjVqVGrb4sWLczYuAAAAAAA1lwAdAAAAAAAAwP9p2rRp1vssK0CVuPrqq6M6mD17drnHlBf0y8XPr7gmTZpETZH8vJYuXVpmYDOpEJdr5QUbywtGrq4NNtggcqVWrVo56xsAAAAAgPxUUNUTAAAAAAAAAKguchHOynY4KVcWLFhQ7jHz58+v8nBbTQrQTZs2rcoDhxUZZ+rUqVkdL6msBwAAAAAA1YUAHQAAAAAAAEAOw1lz5syJmmDRokVrfUzjxo0j12pSgK68UGJlnUt5AbqKhCcBAAAAAKCmEqADAAAAAAAA+D8FBdn/CrWmhJNWrFix1n3UqlUrauK/Ua4sXLiwRgToypsnAAAAAADUZDXnmwUAAAAAAACAGmjJkiWRL+rXr19m++zZs3M+h1mzZuV8DAAAAAAAIH8I0AEAAAAAAABUYeisJmnYsGGZ7QJ0K1tvvfWq/OdVkZ9ZefMEAAAAAICarE5VTwAAAAAAAAAgn5UXOvvqq69i8803j5qgVatWVR4Iq6zQWTY0aNCgRgToypsnAAAAAADUZCrQAQAAAAAAAORQixYtymxfuHBh1BRt2rQpNwyYa5UxRra0bNmyRgToygtGAgAAAABATSZABwAAAAAAAJBDHTp0KLN9ypQpUVNsuummZbZ/+OGHOZ9DZYyRzQBdnTp1Sm0fP358LF26NOfz+Prrr9cqGAkAAAAAADWZAB0AAAAAAABAFYbOxo4dGzXFxhtvHM2bNy+1/aOPPorly5fnbPyk748//jhqilq1apUZoEyqD44ZMybn8xg1alSZ7R07dsz5HAAAAAAAoKoI0AEAAAAAAADk0A477FBm++jRo6Mm6datW6ltc+fOjQ8++CBnY7///vsxb968qEm22WabtQq3ra0lS5bEJ598UuYx2267bU7nAAAAAAAAVUmADgAAAAAAACCHdt111zLbBw8eHDXJXnvtVWb7I488krOxc9l3rmy//fZltg8ZMiSn448cOTIWL15cZvW5pk2b5nQOAAAAAABQlQToAAAAAAAAAHJogw02iB133LHU9qRi24QJE6Km2G+//cps//e//x3Lli3L+rhLly5N+65p9txzzzLbn3zyyTIDbmurf//+Zbb36tUrZ2MDAAAAAEB1IEAHAAAAAAAAkGNHHnlkme33339/1BTdu3eP9u3bl9o+efLkePjhh7M+br9+/WLKlClR0/To0SPWW2+9UttnzJgRL730Uk7GToJ5jz32WJnH7LvvvjkZGwAAAAAAqgsBOgAAAAAAAIAcO+6446KgoPSvZ+++++6YNWtW1AS1atWK448/vsxjLrroovjpp5+yNubMmTPj4osvjpooCc8ddNBBZR5zzz335GTspGJfEtArTb169eLnP/95TsYGAAAAAIDqQoAOAAAAAAAAIMc222yzMkNU06ZNiyuuuCJqijPOOCPq1KlTavvUqVPjggsuyNp4F154YfozqqlOPPHEMttfe+21eO6557I65pw5c8oNHR5yyCHRokWLrI4LAAAAAADVjQAdAAAAAAAAQCW45JJLymy/66674tlnn42aoH379nHCCSeUecz9998fd95551qP9Ze//CXtqyZLgmrJz6ws5557bixcuDBrY1599dUxadKkMo85/fTTszYeAAAAAABUVwJ0AAAAAAAAAJVgjz32iD59+pTavmLFijjuuOPi9ddfr7Q5/fTTT/HWW2+t0XuvvfbaWH/99cs85qyzzoprrrkmPbfVtXz58vjTn/4UZ599dtR0devWTavoleXbb7+N0047LSvjvfDCC3H77beXeUz37t1jn332ycp4AAAAAABQnQnQAQAAAAAAAFSSW2+9NZo1a1Zq+4IFC+LAAw9MQ2dJgCxXxo8fHxdffHF07NgxHnzwwTXqo23btvHHP/6x3OOuvPLK6N27d3zwwQcV7vv9999P33PVVVet0rbddttFTfS73/0utthiizKP6devX5x33nlrNc6bb74ZxxxzTLm/PzfccMNajQMAAAAAADWFAB0AAAAAAABAJenQoUPce++9ZR6TBJ+S0FlSHWzw4MFZGzsJ5z322GNx6KGHxqabbho33nhjzJ49e636TMJe++67b7nHvfPOO7HTTjvFnnvumYYIhw0bFtOmTYslS5ak29SpU9N9t9xyS/To0SN23nnnGDhw4Cr9tGvXLq18VxPVr18/7r777nKPu+222+LII4+M6dOnr1b/ye9NUnXuoIMOivnz55d57K9+9avo1avXavUPAAAAAAA1VZ2qngAAAAAAAADAuiSpDvbhhx+WWwFswIAB0bNnz9htt93i9NNPTyuytW/fvsLjLF26ND766KMYMmRIvPbaa/HWW2+VG6xaXbVq1YpHH300dt999/jqq6/KPX7QoEHptibq1q0b/fv3r9CcqqskbHjuueemIbmyPPPMM2no8IILLkgr12244YZl/js/++yz0bdv3wpV+Uuq4N1xxx1rNH8AAAAAAKiJBOgAAAAAAAAAKtn111+fVl174IEHyj12+PDh6Zbo2LFjdO/ePVq3bh0bbLBBNG/ePNZbb71YuHBhzJ07NyZPnhw//PBDfPnll2mgLdmfa0m465VXXom99torJkyYkLNxksp9yRhJsLAsdepU76/Bb7rpphg9enQaaCzLzJkz49JLL40rrrgidt1117SCX6dOnaJRo0axePHimDJlSnzyySfpz+Onn36q0NhNmjSJ//znP+kjAAAAAACsK6r3NwcAAAAAAAAAeeq+++5LQ3A333xzhd8zbty4dKtuNt100xg6dGj8/Oc/j48//jirfSeBuPvvvz9OPvnk9HV5ocAkUFidJeeTVIzbf//9Y9iwYeUev2zZsvS4ihxbliR49/LLL8c222yzVv0AAAAAAEBNU1DVEwAAAAAAAABYF9WqVSutRvbQQw+l4aaarl27dvHuu+/G73//+6z1mVRce/3114vCc4WV2WpygC6R/Hu/+uqrccghh1TKeG3btk0r3u2+++6VMh4AAAAAAFQnAnQAAAAAAAAAVSgJh40aNSqtSFbZNt5449h7772z1l/Dhg3j3nvvTYN0vXv3XuN+mjVrFpdddllazW6vvfZaqe2nn34q870tWrSImqBx48ZpJbprrrkm6tWrl7NxDjjggBgxYkTssssuORsDAAAAAACqMwE6AAAAAAAAgCq2+eabpxXJXnrppZxXCWvQoEEce+yx8corr8T48ePj17/+ddbH2G233dKKZ0kA7oILLojtttsurbhXlqZNm8YRRxwRDz74YDqva6+9tsTKfGVVoCsoKIiWLVtGTZHM9/LLL48PP/wwfv7zn2e170033TQeeeSR9N+5TZs2We0bAAAAAABqkjpVPQEAAAAAAAAA/tdBBx2Ubh988EE8/PDD8cwzz8S4cePWqs8kuJYE2Pbdd99023PPPdNKcZVhm222iZtuuind5s6dG59//nl8//33MWfOnFi+fHlahS2pNrfllltGu3btKtTn6NGjS23baKONonbt2lHTdO3aNV588cW0EuE999wTTz75ZJlBwdIk555UFDzllFPi6KOPrpE/CwAAAAAAyLZaK1asWJH1XgEAAAAAAADIijFjxsTw4cPj/fffj2+++SYN1E2dOjXmz58fCxYsiHr16kWTJk3SMFqyJSGyzp07R5cuXdJt2223jRYtWkS+6NSpU6mhwn322SfeeOONqOkWL14c7777bgwePDgNDCb/7knwMAkhJv/mdevWjfXXXz+ttpdUmksCeEnlwiQcWZMq8AEAAAAAQGUQoAMAAAAAAACgRvjxxx+jTZs2pbafddZZcccdd1TqnAAAAAAAgOqtoKonAAAAAAAAAAAV8a9//avM9u7du1faXAAAAAAAgJpBBToAAAAAAAAAqr3ly5fHFltsEd9++22px/zwww+x8cYbV+q8AAAAAACA6k0FOgAAAAAAAACqvf/85z9lhue6desmPAcAAAAAAKxCgA4AAAAAAACAam3SpElx+umnl3nMcccdV2nzAQAAAAAAao5aK1asWFHVkwAAAAAAAACAkixevDgOPPDAePvtt0s9pl69ejF27Nho06ZNpc4NAAAAAACo/lSgAwAAAAAAAGCt/Nd//Vd88MEHWe93ypQpsffee5cZnkucdNJJwnMAAAAAAECJVKADAAAAAAAAYK3UqlUrfTzggAPi3HPPjX322Sfq1Kmzxv0lX2M//fTTaV/jx48v89j1118/Pvvss+jQocMajwcAAAAAAOQvAToAAAAAAAAAshKgK9SyZcvo06dPHHXUUbHrrrtG06ZNK9RPEpZ7/fXX49Zbb01DcRVx8803x/nnn79G8wYAAAAAAPKfAB0AAAAAAAAAWQ3QFW/bfPPNY8cdd4yNN944mjdvHs2aNYuCgoKYMWNGuk2ePDmGDRsWY8eOXa1xDz744HjuuefSvgAAAAAAAEoiQAcAAAAAAABAzgJ0ubLTTjvFm2++WeHqdgAAAAAAwLrJbfgAAAAAAAAAqFF69uwpPAcAAAAAAFSIAB0AAAAAAAAANULt2rXjoosuirfeekt4DgAAAAAAqBABOgAAAAAAAADWypFHHhkNGjTI6RgHHHBAjBo1Km644YaoU6dOTscCAAAAAADyR60VK1asqOpJAAAAAAAAAFCzzZs3L1544YV47rnnYsiQITFu3Li17rNdu3ZxxBFHxO9///vYZpttsjJPAAAAAABg3SJABwAAAAAAAEDWTZo0KYYNGxZjxoyJsWPHxnfffRfff/99zJ07Nw3bzZ8/P5YuXRr169ePhg0bRsuWLaN9+/ax2WabxY477hi77bZbbLfddlV9GgAAAAAAQA0nQAcAAAAAAAAAAAAAAABAXiqo6gkAAAAAAAAAAAAAAAAAQC4I0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAACQlwToAAAAAAAAAAAAAAAAAMhLAnQAAAAAAAAAAAAAAAAA5CUBOgAAAAAAAAAAAAAAAADykgAdAAAAAAAAAAAAAAAAAHlJgA4AAAAAAAAAAAAAAACAvCRABwAAAAAAAAAAAAAAAEBeEqADAAAAAAAAAAAAAAAAIC8J0AEAAAAAAAAAAAAAAAAQ+ej/AdMLZw2P54FPAAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "execution_count": 9
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/polars-vs-pandas/Online_Retail.parquet b/polars-vs-pandas/Online_Retail.parquet
new file mode 100644
index 0000000000..30f6193e23
Binary files /dev/null and b/polars-vs-pandas/Online_Retail.parquet differ
diff --git a/polars-vs-pandas/README.md b/polars-vs-pandas/README.md
new file mode 100644
index 0000000000..4c8b92b1d0
--- /dev/null
+++ b/polars-vs-pandas/README.md
@@ -0,0 +1,14 @@
+The materials contained in this download are designed to complement the RealPython tutorial [Polars vs pandas - What's the Difference](https://realpython.com/polars-vs-pandas-difference/).
+
+You should create a new folder named marimo on your computer and place each of these files inside it. You may also consider creating a [Python virtual environment](https://realpython.com/python-virtual-environments-a-primer/) within this folder.
+
+Your download bundle contains the following files:
+
+Online_Retail.parquet - This parquet file contains retail data used in some of the queries.
+data_generation.py - This script contains the generate_data() function used to generate different quantities of data.
+dataframe_and_lazyframe_time_tests.py - This script performs time tests for DataFrames and a LazyFrame.
+streaming_test.py - This script performs time tests for a LazyFrame with streaming enabled.
+
+dataframe_conversions.py - This file contains the code used to convert between pandas and Polars DataFrames, plus a Narwhals example.
+sample_pandas_and_polars_code.py - This file contains the code used to illustrate the differences between pandas and Polars syntax.
+DataFrame_Plots.ipynb - This Jupyter Notebook file contains the plotting code to demonstrate default plotting capabilities.
diff --git a/polars-vs-pandas/data_generation.py b/polars-vs-pandas/data_generation.py
new file mode 100644
index 0000000000..108ab6c308
--- /dev/null
+++ b/polars-vs-pandas/data_generation.py
@@ -0,0 +1,19 @@
+import numpy as np
+
+
+def generate_data(number_of_rows):
+ rng = np.random.default_rng()
+
+ return {
+ "order_id": range(1, number_of_rows + 1),
+ "region": rng.choice(
+ ["North", "South", "East", "West"], size=number_of_rows
+ ),
+ "sales_person": rng.choice(
+ ["Armstrong", "Aldrin", "Collins"], size=number_of_rows
+ ),
+ "product": rng.choice(
+ ["Helmet", "Oxygen", "Boots", "Gloves"], size=number_of_rows
+ ),
+ "sales_income": rng.integers(1, 5001, size=number_of_rows),
+ }
diff --git a/polars-vs-pandas/dataframe_and_lazyframe_time_tests.py b/polars-vs-pandas/dataframe_and_lazyframe_time_tests.py
new file mode 100644
index 0000000000..e5b427c820
--- /dev/null
+++ b/polars-vs-pandas/dataframe_and_lazyframe_time_tests.py
@@ -0,0 +1,93 @@
+import functools
+import sys
+from timeit import Timer
+
+import pandas as pd
+import polars as pl
+from data_generation import generate_data
+
+
+def create_pandas_dataframe(test_data):
+ return pd.DataFrame(test_data).convert_dtypes(dtype_backend="pyarrow")
+
+
+def create_polars_dataframe(test_data):
+ return pl.DataFrame(test_data)
+
+
+def create_polars_lazyframe(test_data):
+ return pl.LazyFrame(test_data)
+
+
+def analyze_pandas_dataframe(pandas_df):
+ return pandas_df.groupby(["region", "product", "sales_person"])[
+ "sales_income"
+ ].sum()
+
+
+def analyze_polars_dataframe(polars_df):
+ return polars_df.group_by(["region", "product", "sales_person"]).agg(
+ total_sales=pl.col("sales_income").sum()
+ )
+
+
+def analyze_polars_lazyframe(polars_lf):
+ return (
+ polars_lf.group_by(["region", "product", "sales_person"])
+ .agg(total_sales=pl.col("sales_income").sum())
+ .collect()
+ )
+
+
+test_data = generate_data(int(sys.argv[1]))
+
+print("Creating Dataframes...")
+print(f"Pandas dataframe creation time for {int(sys.argv[1])} rows:")
+print(Timer(functools.partial(create_pandas_dataframe, test_data)).timeit(100))
+print(f"\nPolars dataframe creation time for {int(sys.argv[1])} rows:")
+print(Timer(functools.partial(create_polars_dataframe, test_data)).timeit(100))
+print(f"\nPolars lazyframe creation time for {int(sys.argv[1])} rows:")
+print(Timer(functools.partial(create_polars_lazyframe, test_data)).timeit(100))
+
+pandas_df = create_pandas_dataframe(test_data)
+polars_df = create_polars_dataframe(test_data)
+polars_lf = create_polars_lazyframe(test_data)
+
+print("\nAnalyzing Dataframes...")
+print(f"Pandas dataframe analysis time for {int(sys.argv[1])} rows:")
+print(
+ Timer(functools.partial(analyze_pandas_dataframe, pandas_df)).timeit(100)
+)
+
+print(f"\nPolars dataframe analysis time for {int(sys.argv[1])} rows:")
+print(
+ Timer(functools.partial(analyze_polars_dataframe, polars_df)).timeit(100)
+)
+
+print(f"\nPolars lazyframe analysis time for {int(sys.argv[1])} rows:")
+print(
+ Timer(functools.partial(analyze_polars_lazyframe, polars_lf)).timeit(100)
+)
+
+print("\nShow Boots sales in the East region for pandas DataFrame")
+print(analyze_pandas_dataframe(pandas_df)["East"]["Boots"])
+
+print("\nShow Boots sales in the East region for polars DataFrame")
+print(
+ (
+ analyze_polars_dataframe(polars_df).filter(
+ pl.col("region") == "East",
+ pl.col("product") == "Boots",
+ )
+ )
+)
+
+print("\nShow Boots sales in the East region for pandas LazyFrame")
+print(
+ (
+ analyze_polars_lazyframe(polars_lf).filter(
+ pl.col("region") == "East",
+ pl.col("product") == "Boots",
+ )
+ )
+)
diff --git a/polars-vs-pandas/sample_pandas_and_polars_code.py b/polars-vs-pandas/sample_pandas_and_polars_code.py
new file mode 100644
index 0000000000..46d7b5cb02
--- /dev/null
+++ b/polars-vs-pandas/sample_pandas_and_polars_code.py
@@ -0,0 +1,32 @@
+import pandas as pd
+import polars as pl
+
+# Pandas index-based syntax
+orders_pandas = pd.read_parquet("online_retail.parquet")
+
+orders_pandas["Total"] = orders_pandas["Quantity"] * orders_pandas["UnitPrice"]
+
+orders_pandas[["InvoiceNo", "Quantity", "UnitPrice", "Total"]][
+ orders_pandas["Total"] > 100
+].head(3)
+
+# Pandas method chaining syntax
+orders_pandas = pd.read_parquet("online_retail.parquet")
+
+(
+ orders_pandas.assign(
+ Total=orders_pandas["Quantity"] * orders_pandas["UnitPrice"]
+ )
+ .filter(["InvoiceNo", "Quantity", "UnitPrice", "Total"])
+ .query("Total > 100")
+).head(3)
+
+# Polars method chaining syntax
+orders_polars = pl.read_parquet("online_retail.parquet")
+
+(
+ orders_polars.select(
+ pl.col(["InvoiceNo", "Quantity", "UnitPrice"]),
+ total=pl.col("Quantity") * pl.col("UnitPrice"),
+ ).filter(pl.col("total") > 100)
+).head(3)
diff --git a/polars-vs-pandas/streaming_test.py b/polars-vs-pandas/streaming_test.py
new file mode 100644
index 0000000000..58b783570a
--- /dev/null
+++ b/polars-vs-pandas/streaming_test.py
@@ -0,0 +1,37 @@
+import functools
+import sys
+from timeit import Timer
+
+import polars as pl
+from data_generation import generate_data
+
+
+def create_polars_lazyframe(test_data):
+ return pl.LazyFrame(test_data)
+
+
+def analyze_polars_lazyframe(polars_lf):
+ polars_lf.group_by(["region", "product", "sales_person"]).agg(
+ total_sales=pl.col("sales_income").sum()
+ ).collect()
+
+
+def analyze_polars_streaming(polars_lf):
+ polars_lf.group_by(["region", "product", "sales_person"]).agg(
+ total_sales=pl.col("sales_income").sum()
+ ).collect(engine="streaming")
+
+
+test_data = generate_data(int(sys.argv[1]))
+
+polars_lf = create_polars_lazyframe(test_data)
+
+print(f"Polars lazyframe analysis time for {int(sys.argv[1])} rows:")
+print(
+ Timer(functools.partial(analyze_polars_lazyframe, polars_lf)).timeit(100)
+)
+
+print(f"\nPolars streaming analysis time for {int(sys.argv[1])} rows:")
+print(
+ Timer(functools.partial(analyze_polars_streaming, polars_lf)).timeit(100)
+)