-
Notifications
You must be signed in to change notification settings - Fork 18
Open
Description
OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)
Input ##### 72 300
InputLayer | ------------------- 0 0.0%
##### 72 300
Dense XXXXX ------------------- 15050 92.0%
##### 72 50
InputLayer | ------------------- 0 0.0%
##### 72 3
Concatenate ????? ------------------- 0 0.0%
##### 72 53
LSTM LLLLL ------------------- 1180 7.0%
tanh ##### 5
Lambda ????? ------------------- 0 0.0%
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-222-96aac99b2755> in <module>()
----> 1 keras2ascii(lstm_model)
/anaconda3/envs/tensorflow_p27/lib/python2.7/site-packages/keras_sequential_ascii/main.pyc in sequential_model_to_ascii_printout(model, sparser, simplify, header)
123
124 def sequential_model_to_ascii_printout(model, sparser=False, simplify=True, header=True):
--> 125 print_layers(jsonize(model), sparser=sparser, simplify=simplify, header=header)
/anaconda3/envs/tensorflow_p27/lib/python2.7/site-packages/keras_sequential_ascii/main.pyc in print_layers(jsonized_layers, sparser, simplify, header)
118 print(data_template.format(
119 activation=each["activation"] if each["activation"] != "linear" else "",
--> 120 shape=print_dim_tuple(each["output_shape"]),
121 # length=product(each["output_shape"])
122 ))
/anaconda3/envs/tensorflow_p27/lib/python2.7/site-packages/keras_sequential_ascii/main.pyc in print_dim_tuple(t)
83 return " ".join(["{:4d}".format(x) for x in t])
84 else:
---> 85 return "{:9d}".format(t[0])
86
87 def print_layers(jsonized_layers, sparser=False, simplify=False, header=True):
IndexError: tuple index out of range
For model:
x = Input(shape=(72,300))
aux_input = Input(shape=(72, 3))
probs = Input(shape=(1,))
dim_reduct = Dense(50)(x)
cat = concatenate([dim_reduct, aux_input])
encoded = LSTM(5)(cat)
#cat2 = concatenate([encoded, probs])
#output = Dense(1, activation='linear')(encoded)
output = Lambda(lambda x: K.sum(x, axis=1))(encoded)
Metadata
Metadata
Assignees
Labels
No labels