You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: public/consolidated/c.json
+103-2Lines changed: 103 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1
[
2
2
{
3
-
"categoryName": "Basics",
3
+
"name": "Basics",
4
4
"snippets": [
5
5
{
6
6
"title": "Hello, World!",
@@ -16,7 +16,7 @@
16
16
]
17
17
},
18
18
{
19
-
"categoryName": "Mathematical Functions",
19
+
"name": "Mathematical Functions",
20
20
"snippets": [
21
21
{
22
22
"title": "Factorial Function",
@@ -41,5 +41,106 @@
41
41
"code": "#include<stdio.h>\nvoid swap(int* num1,int* num2){\n *num1 = *num1 + *num2;\n *num2 = *num1 - *num2;\n *num1 = *num1 - *num2;\n}\n\n// Usage:\nint a = 3,b = 4;\nswap(&a,&b); // swaps the values of the a and b variables\n"
42
42
}
43
43
]
44
+
},
45
+
{
46
+
"name": "Search",
47
+
"snippets": [
48
+
{
49
+
"title": "Binary Search ",
50
+
"description": "Searches for an element in a sorted array using the Binary Search algorithm.",
51
+
"author": "0xHouss",
52
+
"tags": [
53
+
"search",
54
+
"binarysearch",
55
+
"array",
56
+
"algorithm"
57
+
],
58
+
"contributors": [],
59
+
"code": "int binarySearch(int arr[], int low, int high, int x) {\n while (low <= high) {\n int mid = low + (high - low) / 2;\n\n // Check if x is present at mid\n if (arr[mid] == x) {\n return mid;\n }\n\n // If x is smaller, search the left half\n if (arr[mid] > x) {\n high = mid - 1;\n } else { // If x is larger, search the right half\n low = mid + 1;\n }\n }\n return -1; // Element not found\n}\n\n// Usage:\nint arr[] = {2, 3, 4, 10, 40};\nint n = sizeof(arr) / sizeof(arr[0]);\nint x = 10;\nint result = binarySearch(arr, 0, n - 1, x);\n// result = 3 (index of the element 10)\n\n\n"
60
+
},
61
+
{
62
+
"title": "Linear Search ",
63
+
"description": "Searches for an element in an array using the Linear Search algorithm.",
64
+
"author": "0xHouss",
65
+
"tags": [
66
+
"search",
67
+
"linearsearch",
68
+
"array",
69
+
"algorithm"
70
+
],
71
+
"contributors": [],
72
+
"code": "int linearSearch(int arr[], int n, int x) {\n for (int i = 0; i < n; i++) {\n if (arr[i] == x) {\n return i; // Element found at index i\n }\n }\n return -1; // Element not found\n}\n\n// Usage:\nint arr[] = {10, 20, 30, 40, 50};\nint n = sizeof(arr) / sizeof(arr[0]);\nint x = 30;\nint result = linearSearch(arr, n, x);\n// result = 2 (index of the element 30)\n\n"
73
+
}
74
+
]
75
+
},
76
+
{
77
+
"name": "Sorting",
78
+
"snippets": [
79
+
{
80
+
"title": "Bubble Sort ",
81
+
"description": "Sorts an array of integers using the Bubble Sort algorithm.",
82
+
"author": "0xHouss",
83
+
"tags": [
84
+
"sorting",
85
+
"bubblesort",
86
+
"array",
87
+
"algorithm"
88
+
],
89
+
"contributors": [],
90
+
"code": "void bubbleSort(int arr[], int n) {\n for (int i = 0; i < n - 1; i++) {\n for (int j = 0; j < n - i - 1; j++) {\n if (arr[j] > arr[j + 1]) {\n // Swap arr[j] and arr[j + 1]\n int temp = arr[j];\n arr[j] = arr[j + 1];\n arr[j + 1] = temp;\n }\n }\n }\n}\n\n// Usage:\nint arr[] = {64, 34, 25, 12, 22, 11, 90};\nint n = sizeof(arr) / sizeof(arr[0]);\nbubbleSort(arr, n);\n// Now arr[] is sorted: {11, 12, 22, 25, 34, 64, 90}\n"
91
+
},
92
+
{
93
+
"title": "Insertion Sort ",
94
+
"description": "Sorts an array of integers using the Insertion Sort algorithm.",
95
+
"author": "0xHouss",
96
+
"tags": [
97
+
"sorting",
98
+
"insertionsort",
99
+
"array",
100
+
"algorithm"
101
+
],
102
+
"contributors": [],
103
+
"code": "void insertionSort(int arr[], int n) {\n for (int i = 1; i < n; i++) {\n int key = arr[i];\n int j = i - 1;\n\n // Move elements of arr[0..i-1] that are greater than key\n // to one position ahead of their current position\n while (j >= 0 && arr[j] > key) {\n arr[j + 1] = arr[j];\n j--;\n }\n arr[j + 1] = key;\n }\n}\n\n// Usage:\nint arr[] = {12, 11, 13, 5, 6};\nint n = sizeof(arr) / sizeof(arr[0]);\ninsertionSort(arr, n);\n// Now arr[] is sorted: {5, 6, 11, 12, 13}\n\n"
104
+
},
105
+
{
106
+
"title": "Merge Sort ",
107
+
"description": "Sorts an array of integers using the Merge Sort algorithm.",
108
+
"author": "0xHouss",
109
+
"tags": [
110
+
"sorting",
111
+
"mergesort",
112
+
"array",
113
+
"algorithm"
114
+
],
115
+
"contributors": [],
116
+
"code": "#include <stdio.h>\n\nvoid merge(int arr[], int l, int m, int r) {\n int n1 = m - l + 1;\n int n2 = r - m;\n\n // Temporary arrays\n int L[n1], R[n2];\n\n // Copy data to temporary arrays L[] and R[]\n for (int i = 0; i < n1; i++)\n L[i] = arr[l + i];\n for (int j = 0; j < n2; j++)\n R[j] = arr[m + 1 + j];\n\n int i = 0, j = 0, k = l;\n\n // Merge the temporary arrays back into arr[l..r]\n while (i < n1 && j < n2) {\n if (L[i] <= R[j]) {\n arr[k] = L[i];\n i++;\n } else {\n arr[k] = R[j];\n j++;\n }\n k++;\n }\n\n // Copy remaining elements of L[], if any\n while (i < n1) {\n arr[k] = L[i];\n i++;\n k++;\n }\n\n // Copy remaining elements of R[], if any\n while (j < n2) {\n arr[k] = R[j];\n j++;\n k++;\n }\n}\n\nvoid mergeSort(int arr[], int l, int r) {\n if (l < r) {\n int m = l + (r - l) / 2;\n\n // Sort first and second halves\n mergeSort(arr, l, m);\n mergeSort(arr, m + 1, r);\n\n merge(arr, l, m, r);\n }\n}\n\n// Usage:\nint arr[] = {38, 27, 43, 3, 9, 82, 10};\nint n = sizeof(arr) / sizeof(arr[0]);\nmergeSort(arr, 0, n - 1);\n// Now arr[] is sorted: {3, 9, 10, 27, 38, 43, 82}\n\n"
117
+
},
118
+
{
119
+
"title": "Quick Sort ",
120
+
"description": "Sorts an array of integers using the Quick Sort algorithm.",
121
+
"author": "0xHouss",
122
+
"tags": [
123
+
"sorting",
124
+
"quicksort",
125
+
"array",
126
+
"algorithm"
127
+
],
128
+
"contributors": [],
129
+
"code": "int partition(int arr[], int low, int high) {\n int pivot = arr[high]; // Pivot element\n int i = low - 1;\n\n for (int j = low; j < high; j++) {\n if (arr[j] < pivot) {\n i++;\n // Swap arr[i] and arr[j]\n int temp = arr[i];\n arr[i] = arr[j];\n arr[j] = temp;\n }\n }\n\n // Swap arr[i + 1] and arr[high] (pivot)\n int temp = arr[i + 1];\n arr[i + 1] = arr[high];\n arr[high] = temp;\n\n return i + 1;\n}\n\nvoid quickSort(int arr[], int low, int high) {\n if (low < high) {\n int pi = partition(arr, low, high);\n\n // Recursively sort elements before and after partition\n quickSort(arr, low, pi - 1);\n quickSort(arr, pi + 1, high);\n }\n}\n\n// Usage:\nint arr[] = {10, 7, 8, 9, 1, 5};\nint n = sizeof(arr) / sizeof(arr[0]);\nquickSort(arr, 0, n - 1);\n// Now arr[] is sorted: {1, 5, 7, 8, 9, 10}\n\n"
130
+
},
131
+
{
132
+
"title": "Selection Sort ",
133
+
"description": "Sorts an array of integers using the Selection Sort algorithm.",
134
+
"author": "0xHouss",
135
+
"tags": [
136
+
"sorting",
137
+
"selectionsort",
138
+
"array",
139
+
"algorithm"
140
+
],
141
+
"contributors": [],
142
+
"code": "void selectionSort(int arr[], int n) {\n for (int i = 0; i < n - 1; i++) {\n int minIdx = i;\n\n // Find the minimum element in the unsorted part of the array\n for (int j = i + 1; j < n; j++) {\n if (arr[j] < arr[minIdx]) {\n minIdx = j;\n }\n }\n\n // Swap the found minimum element with the first element of the unsorted part\n int temp = arr[minIdx];\n arr[minIdx] = arr[i];\n arr[i] = temp;\n }\n}\n\n// Usage:\nint arr[] = {64, 25, 12, 22, 11};\nint n = sizeof(arr) / sizeof(arr[0]);\nselectionSort(arr, n);\n// Now arr[] is sorted: {11, 12, 22, 25, 64}\n\n"
0 commit comments