Skip to content

Commit 0ae44d7

Browse files
arjungtensorflow-copybara
authored andcommitted
Update KDD website with pointers to colab tutorials.
PiperOrigin-RevId: 324100910
1 parent ecde04f commit 0ae44d7

File tree

1 file changed

+11
-8
lines changed

1 file changed

+11
-8
lines changed

workshops/kdd_2020/README.md

Lines changed: 11 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ We will begin the tutorial with an overview of the Neural Structured Learning
3636
framework and motivate the advantages of training neural networks with
3737
structured signals.
3838

39-
[Slides](slides/Introduction.pdf)
39+
[[Slides](slides/Introduction.pdf)]
4040

4141
### Data preprocessing in NSL
4242

@@ -46,7 +46,7 @@ This part of the tutorial will include a presentation discussing:
4646
- Augmenting training data for graph-based regularization in NSL
4747
- Related tools in the NSL framework
4848

49-
[Slides](slides/Data_Preprocessing.pdf)
49+
[[Slides](slides/Data_Preprocessing.pdf)]
5050

5151
### Graph regularization using natural graphs (Lab 1)
5252

@@ -57,7 +57,8 @@ inherent relationship between each other. We will demonstrate via a practical
5757
tutorial, the use of natural graphs for graph regularization to classify the
5858
veracity of public message posts.
5959

60-
[Slides](slides/Natural_Graphs.pdf)
60+
[[Slides](slides/Natural_Graphs.pdf)]
61+
[[Colab tutorial](https://colab.research.google.com/github/tensorflow/neural-structured-learning/blob/master/workshops/kdd_2020/graph_regularization_pheme_natural_graph.ipynb)]
6162

6263
### Graph regularization using synthesized graphs (Lab 2)
6364

@@ -68,7 +69,8 @@ for text classification using a practical tutorial. While graphs can be built in
6869
many ways, we will make use of text embeddings in this tutorial to build a
6970
graph.
7071

71-
[Slides](slides/Synthesized_graphs.pdf)
72+
[[Slides](slides/Synthesized_Graphs.pdf)]
73+
[[Colab tutorial](https://colab.research.google.com/github/tensorflow/neural-structured-learning/blob/master/g3doc/tutorials/graph_keras_lstm_imdb.ipynb)]
7274

7375
### Adversarial regularization (Lab 3)
7476

@@ -78,14 +80,15 @@ adversarial learning techniques [3,4] like *Fast Gradient Sign Method* (FGSM)
7880
and *Projected Gradient Descent* (PGD) for image classification using a
7981
practical tutorial.
8082

81-
[Slides](slides/Adversarial_Learning.pdf)
83+
[[Slides](slides/Adversarial_Learning.pdf)]
84+
[[Colab tutorial](https://colab.research.google.com/github/tensorflow/neural-structured-learning/blob/master/workshops/kdd_2020/adversarial_regularization_mnist.ipynb)]
8285

8386
### NSL in TensorFlow Extended (TFX)
8487

8588
- Presentation on how Neural Structured Learning can be integrated with
8689
[TFX](https://www.tensorflow.org/tfx) pipelines.
8790

88-
[Slides](slides/NSL_in_TFX.pdf)
91+
[[Slides](slides/NSL_in_TFX.pdf)]
8992

9093
### Research and Future Directions
9194

@@ -96,15 +99,15 @@ practical tutorial.
9699
- Prototype showing how NSL can be used with the
97100
[Graph Nets](https://github.com/deepmind/graph_nets) [9] library.
98101

99-
[Slides](slides/Research_and_Future_Directions.pdf)
102+
[[Slides](slides/Research_and_Future_Directions.pdf)]
100103

101104
### Conclusion
102105

103106
We will conclude our tutorial with a summary of the entire session, provide
104107
links to various NSL resources, and share a link to a brief survey to get
105108
feedback on the NSL framework and the hands-on tutorial.
106109

107-
[Slides](slides/Summary.pdf)
110+
[[Slides](slides/Summary.pdf)]
108111

109112
## References
110113

0 commit comments

Comments
 (0)