-
Notifications
You must be signed in to change notification settings - Fork 10
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Hi,
I'm trying to package batchglm for GNU Guix, but I'm having problems running the tests.
I'm only have tensorflow 1.9.0, so I replaced "tf.compat.v1." with "tf." throughout. I run the tests with python batchglm/unit_test/run_all_tests.py
after installing and putting the installed location on PYTHONPATH.
I see errors like this:
======================================================================
ERROR: test_compute_jacobians_norm (batchglm.unit_test.test_jacobians_glm_all.Test_Jacobians_GLM_NORM)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 176, in test_compute_jacobians_norm
self._test_compute_jacobians(sparse=False)
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 152, in _test_compute_jacobians
self.simulate()
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 29, in simulate
from batchglm.api.models import Simulator
ImportError: cannot import name 'Simulator' from 'batchglm.api.models' (/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/api/models/__init__.py)
I'm not a Python person, so I don't know if there should be a batchglm/api/models/simulator.py file (there is not) that defines the Simulator
class. All I see is class definitions in batchglm/models/glm_beta/simulator.py
and similar files, but none under the batchglm.api
namespace.
There are other errors like this:
======================================================================
ERROR: test_compute_jacobians_beta (batchglm.unit_test.test_jacobians_glm_all.Test_Jacobians_GLM_BETA)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 187, in test_compute_jacobians_beta
self._test_compute_jacobians(sparse=False)
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 152, in _test_compute_jacobians
self.simulate()
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_jacobians_glm_all.py", line 36, in simulate
sim = Simulator(num_observations=num_observations, num_features=4)
TypeError: Can't instantiate abstract class Simulator with abstract methods eta_loc_j
and
======================================================================
ERROR: test_full_nb (batchglm.unit_test.test_graph_glm_all.TestGraphGlmNb)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 261, in test_full_nb
self._test_full(sparse=True)
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 235, in _test_full
self._test_full_a_and_b(sparse=sparse)
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 186, in _test_full_a_and_b
return self.basic_test(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 177, in basic_test
self.basic_test_one_algo(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 148, in basic_test_one_algo
estimator = _TestGraphGlmAllEstim(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/unit_test/test_graph_glm_all.py", line 55, in __init__
estimator = Estimator(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/train/numpy/glm_nb/estimator.py", line 59, in __init__
init_a, init_b, train_loc, train_scale = init_par(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/models/glm_nb/utils.py", line 120, in init_par
groupwise_means, init_a, rmsd_a = closedform_nb_glm_logmu(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/models/glm_nb/utils.py", line 30, in closedform_nb_glm_logmu
return closedform_glm_mean(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/models/base_glm/utils.py", line 118, in closedform_glm_mean
linker_groupwise_means, mu, rmsd, rank, s = groupwise_solve_lm(
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/utils/linalg.py", line 93, in groupwise_solve_lm
params = apply_fun(inverse_idx)
File "/gnu/store/sszy0n09kniyp1y64svnw35cjgb6s35c-python-batchglm-0.7.4/lib/python3.8/site-packages/batchglm/models/base_glm/utils.py", line 109, in apply_fun
groupwise_means = np.asarray(np.vstack([
File "/gnu/store/kd16r2qb0s7g9ixc6agn485nhbgakdzj-python-numpy-1.17.3/lib/python3.8/site-packages/numpy/core/_asarray.py", line 85, in asarray
return array(a, dtype, copy=False, order=order)
File "/gnu/store/6xigjqkygh99fv5plrpyj6hshn8s96r6-python-dask-2.14.0/lib/python3.8/site-packages/dask/array/core.py", line 1341, in __array__
x = np.array(x)
File "/gnu/store/lgz9l3ygxl2gmg6ymk2lpwxpb99i05h1-python-sparse-0.12.0/lib/python3.8/site-packages/sparse/_sparse_array.py", line 229, in __array__
raise RuntimeError(
RuntimeError: Cannot convert a sparse array to dense automatically. To manually densify, use the todense method.
But I think I should first figure out why the import doesn't work.
I'd appreciate any help!
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working