An end-to-end Python implementation of Cao et al.'s (2025) HLPPL methodology for the identification of financial (asset price) bubbles. Implements 7-parameter Log-Periodic Power Law model fitting, confidence-weighted sentiment analysis, regime-dependent 'BubbleScore' fusion, and Transformer-based forecasting with a backtesting framework.
-
Updated
Oct 16, 2025 - Jupyter Notebook