Skip to content

Commit cbd8eb5

Browse files
authored
Merge pull request #106 from triagemd/remove_wrong_push
Remove wrong push to master
2 parents deaeb67 + 073b9ab commit cbd8eb5

File tree

2 files changed

+19
-49
lines changed

2 files changed

+19
-49
lines changed

keras_eval/eval.py

Lines changed: 19 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@
44
import keras_eval.utils as utils
55
import keras_eval.metrics as metrics
66
import keras_eval.visualizer as visualizer
7-
from keras.preprocessing.image import ImageDataGenerator
87

98
from math import log
109
from keras.utils import generic_utils
@@ -26,7 +25,6 @@ class Evaluator(object):
2625
'batch_size': {'type': int, 'default': 1},
2726
'verbose': {'type': int, 'default': 0},
2827
'data_augmentation': {'type': dict, 'default': None},
29-
'data_generator':{'type':ImageDataGenerator, 'default': None},
3028
}
3129

3230
def __init__(self, **options):
@@ -272,37 +270,29 @@ def _compute_probabilities_generator(self, data_dir=None, data_augmentation=None
272270
else:
273271
for i, model in enumerate(self.models):
274272
print('Making predictions from model ', str(i))
275-
if self.data_generator is None:
276-
# build generator
277-
if data_augmentation is None:
278-
generator, labels = utils.create_image_generator(data_dir, self.batch_size, self.model_specs[i])
279-
# N_batches + 1 to gather all the images + collect without repetition [0:n_samples]
280-
probabilities.append(model.predict_generator(generator=generator,
281-
steps=(generator.samples // self.batch_size) + 1,
282-
workers=1,
283-
verbose=1)[0:generator.samples])
284-
else:
285-
generator, labels = utils.create_image_generator(data_dir, self.batch_size, self.model_specs[i],
286-
data_augmentation=data_augmentation)
287-
print('Averaging probabilities of %i different outputs at sizes: %s with transforms: %s'
288-
% (generator.n_crops, generator.scale_sizes, generator.transforms))
289-
steps = generator.samples
290-
probabilities_model = []
291-
for k, batch in enumerate(generator):
292-
if k == steps:
293-
break
294-
progbar = generic_utils.Progbar(steps)
295-
progbar.add(k + 1)
296-
probs = model.predict(batch[0][0], batch_size=self.batch_size)
297-
probabilities_model.append(np.mean(probs, axis=0))
298-
probabilities.append(probabilities_model)
299-
else:
300-
generator, labels = utils.import_image_generator(data_dir, self.batch_size, self.model_specs[i], self.data_generator)
273+
274+
if data_augmentation is None:
275+
generator, labels = utils.create_image_generator(data_dir, self.batch_size, self.model_specs[i])
276+
# N_batches + 1 to gather all the images + collect without repetition [0:n_samples]
301277
probabilities.append(model.predict_generator(generator=generator,
302278
steps=(generator.samples // self.batch_size) + 1,
303279
workers=1,
304280
verbose=1)[0:generator.samples])
305-
281+
else:
282+
generator, labels = utils.create_image_generator(data_dir, self.batch_size, self.model_specs[i],
283+
data_augmentation=data_augmentation)
284+
print('Averaging probabilities of %i different outputs at sizes: %s with transforms: %s'
285+
% (generator.n_crops, generator.scale_sizes, generator.transforms))
286+
steps = generator.samples
287+
probabilities_model = []
288+
for k, batch in enumerate(generator):
289+
if k == steps:
290+
break
291+
progbar = generic_utils.Progbar(steps)
292+
progbar.add(k + 1)
293+
probs = model.predict(batch[0][0], batch_size=self.batch_size)
294+
probabilities_model.append(np.mean(probs, axis=0))
295+
probabilities.append(probabilities_model)
306296

307297
self.generator = generator
308298
self.num_classes = generator.num_classes

keras_eval/utils.py

Lines changed: 0 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -275,26 +275,6 @@ def create_image_generator(data_dir, batch_size, model_spec, data_augmentation=N
275275

276276
return generator, labels
277277

278-
def import_image_generator(data_dir, batch_size, model_spec, data_gen):
279-
'''
280-
Creates a Keras image generator
281-
Args:
282-
batch_size: N images per batch
283-
preprocessing_function: Function to preprocess the images
284-
target_size: Size of the images
285-
data_gen: The imported data generator
286-
287-
Returns: Keras generator without shuffling samples and ground truth labels associated with generator
288-
289-
'''
290-
print('Input image size: ', model_spec.target_size)
291-
generator = data_gen.flow_from_directory(data_dir, batch_size=batch_size, target_size=model_spec.target_size[:2],
292-
class_mode='categorical', shuffle=False)
293-
294-
labels = keras.utils.np_utils.to_categorical(generator.classes, generator.num_classes)
295-
296-
return generator, labels
297-
298278

299279
def load_preprocess_image(img_path, model_spec):
300280
"""

0 commit comments

Comments
 (0)