Skip to content

[es_distributed/rs.py] eval_rews, eval_length = policy.rollout(env) ValueError: too many values to unpack (expected 2) #30

Open
@dragon28

Description

@dragon28

Hello People,

I am getting the following error when I run . scripts/local_run_exp.sh rs configurations/frostbite_ga.json, which is the RS experiment

Traceback (most recent call last):
  File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/usr/lib/python3.6/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/home/dragon/machine_learning/deep-neuroevolution/es_distributed/main.py", line 90, in <module>
    cli()
  File "/home/dragon/.local/lib/python3.6/site-packages/click/core.py", line 764, in __call__
    return self.main(*args, **kwargs)
  File "/home/dragon/.local/lib/python3.6/site-packages/click/core.py", line 717, in main
    rv = self.invoke(ctx)
  File "/home/dragon/.local/lib/python3.6/site-packages/click/core.py", line 1137, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/home/dragon/.local/lib/python3.6/site-packages/click/core.py", line 956, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/home/dragon/.local/lib/python3.6/site-packages/click/core.py", line 555, in invoke
    return callback(*args, **kwargs)
  File "/home/dragon/machine_learning/deep-neuroevolution/es_distributed/main.py", line 84, in workers
    algo.run_worker(master_redis_cfg, relay_redis_cfg, noise=noise)
  File "/home/dragon/machine_learning/deep-neuroevolution/es_distributed/rs.py", line 190, in run_worker
    eval_rews, eval_length = policy.rollout(env)  # eval rollouts don't obey task_data.timestep_limit
ValueError: too many values to unpack (expected 2)

and I managed to fixed it by changing the following code:

from

deep-neuroevolution/es_distributed/rs.py, line 190:

eval_rews, eval_length = policy.rollout(env) # eval rollouts don't obey task_data.timestep_limit

to:

deep-neuroevolution/es_distributed/rs.py, line 190:

eval_rews, eval_length, _ = policy.rollout(env) # eval rollouts don't obey task_data.timestep_limit

My environment information:
Ubuntu 18.04 x64
Python 3.6.8
tensorflow 1.13.1
Click 7.0
atari-py 0.1.15
numpy 1.16.3
gym 0.12.1
baselines 0.1.5

Thanks

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions