Skip to content

Commit 5e6589b

Browse files
authored
Added block to calculate Centroids from a GeoJSON file
1 parent 7989700 commit 5e6589b

File tree

4 files changed

+97
-0
lines changed

4 files changed

+97
-0
lines changed

Preparation/Geo/Centroids/README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
This block calculates the centroid points (lat,long) and output them together with the shape ID from a specified GeoJSON file.
Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,66 @@
1+
{
2+
"@visokiotype": "CustomBlockSchema.CustomBlockManifest",
3+
"name": "Centroids from GeoJSON",
4+
"scriptFilename": "script.py",
5+
"language": "PYTHON",
6+
"executableVersion": null,
7+
"minVersions": [
8+
null
9+
],
10+
"optionsVersion": 1,
11+
"apiVersion": "VERSION_0",
12+
"isResourceIntensiveScript": false,
13+
"showPartitioning": false,
14+
"icon": "",
15+
"description": "Calculates the centroid points (lat,long) and output them together with the shape ID from a specified GeoJSON file.",
16+
"category": "Preparation",
17+
"subcategory": null,
18+
"tags": [
19+
"geojson",
20+
"centroid",
21+
"shape"
22+
],
23+
"introductoryText": "### Calculates the centroid points (lat,long) and output them together with the shape ID from a specified GeoJSON file.",
24+
"dependencies": "geopandas",
25+
"options": [
26+
{
27+
"name": "geojsonfile",
28+
"title": "GeoJSON File",
29+
"description": "The GeoJSON file containing shapes",
30+
"groupTitle": null,
31+
"width": "ONE",
32+
"@visokiotype": "CustomBlockSchema.FileCustomBlockPublicOption",
33+
"mandatory": true,
34+
"defaultValue": null,
35+
"readOnly": true
36+
},
37+
{
38+
"name": "shapeIDfield",
39+
"title": "Shape ID field name",
40+
"description": "The field in the GeoJSON shape to use as ID",
41+
"groupTitle": null,
42+
"width": "ONE",
43+
"@visokiotype": "CustomBlockSchema.TextCustomBlockPublicOption",
44+
"mandatory": true,
45+
"defaultValue": null
46+
}
47+
],
48+
"blockOutputs": [
49+
{
50+
"@visokiotype": "CustomBlockSchema.BlockOutputPublicOption",
51+
"id": "Output Data",
52+
"label": "Centroids",
53+
"displayName": "Shapes with centroids",
54+
"tooltip": null
55+
}
56+
],
57+
"docker": {
58+
"@visokiotype": "CustomBlockSchema.DockerCustomBlockPublicOption",
59+
"customBaseImage": null,
60+
"useCustomBaseImage": false,
61+
"customSystemLibraries": null,
62+
"installVisokioRepLibraries": false
63+
},
64+
"designLock": false,
65+
"apiMode": "BATCH"
66+
}

Preparation/Geo/Centroids/script.py

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
import pandas as pd
2+
from omniscope.api import OmniscopeApi
3+
omniscope_api = OmniscopeApi()
4+
import geopandas as gpd
5+
6+
# Load the GeoJSON file
7+
gdf = gpd.read_file(omniscope_api.get_option("geojsonfile"))
8+
9+
# Calculate the centroids
10+
gdf['centroid'] = gdf.geometry.centroid
11+
12+
# Create a new DataFrame with the country names (using 'nuts118nm') and their centroids
13+
14+
shapeIDfield = omniscope_api.get_option("shapeIDfield")
15+
16+
result = gdf[[shapeIDfield, 'centroid']].copy()
17+
18+
# Rename the columns for clarity
19+
result.columns = [shapeIDfield, 'centroid_point']
20+
21+
# Split the centroid into latitude and longitude
22+
result['Lat'] = result['centroid_point'].y
23+
result['Long'] = result['centroid_point'].x
24+
25+
# Drop the centroid_point column
26+
result = result[[shapeIDfield, 'Lat', 'Long']]
27+
result
28+
29+
omniscope_api.write_output_records(result, output_number=0)
30+
omniscope_api.close()
33.3 KB
Loading

0 commit comments

Comments
 (0)