|
58 | 58 | | 排序 | [NFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/nfm/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) |
|
59 | 59 | | 排序 | [AFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/afm/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) |
|
60 | 60 | | 排序 | [DeepFM](models/rank/deepfm/) | ✓ | x | ✓ | x | 2.0 | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) |
|
61 |
| - | 排序 | [xDeepFM](models/rank/xdeepfm/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | |
| 61 | + | 排序 | [xDeepFM](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/xdeepfm) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | |
62 | 62 | | 排序 | [DIN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/din/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
|
63 | 63 | | 排序 | [DIEN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/dien/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
|
64 | 64 | | 排序 | [BST](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/BST/) | ✓ | x | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [DLP_KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
|
|
67 | 67 | | 排序 | [FGCNN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fgcnn/) | ✓ | ✓ | ✓ | ✓ | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
|
68 | 68 | | 排序 | [Fibinet](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fibinet/) | ✓ | ✓ | ✓ | ✓ | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
|
69 | 69 | | 排序 | [Flen](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/flen/) | ✓ | ✓ | ✓ | ✓ | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [2019][FLEN: Leveraging Field for Scalable CTR Prediction]( https://arxiv.org/pdf/1911.04690.pdf) |
|
70 |
| - | 多任务 | [PLE](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/multitask/ple/) | ✓ | ✓ | ✓ | ✓ | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) | |
| 70 | + | 多任务 | PLE | ✓ | ✓ | ✓ | ✓ | 1.8.5 | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/abs/10.1145/3383313.3412236) | |
71 | 71 | | 多任务 | [ESMM](models/multitask/esmm/) | ✓ | ✓ | ✓ | ✓ | 2.0 | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
|
72 | 72 | | 多任务 | [MMOE](models/multitask/mmoe/) | ✓ | ✓ | ✓ | ✓ | 2.0 | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
|
73 | 73 | | 多任务 | [ShareBottom](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/multitask/share-bottom/) | ✓ | ✓ | ✓ | ✓ | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
|
|
0 commit comments