Skip to content

Commit 4a48cb0

Browse files
Add files via upload
1 parent 0226a5c commit 4a48cb0

File tree

2 files changed

+14
-8
lines changed

2 files changed

+14
-8
lines changed

Scan_tutorial.Rmd

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,9 @@ TargetScan_graph <-make_graph(c(t(TargetScan)), directed = FALSE)
9292
For convenience, the full list of our prepared bulk and single-cell transcriptomics datasets in the Scan paper can be obtained from [here](https://drive.google.com/file/d/1MgLNYcALNi4nR4S9MiYTGyUCekbGwM_k/view?usp=drive_link).
9393

9494
# Predicting sample-specific miRNA-mRNA regulatory networks
95-
The utility functions for scanning sample-specific miRNA regulation are collected in two source files: **Scan.interp.R** (using a linear interpolation strategy) and **Scan.perturb.R** (using a statistical perturbation strategy). In this tutorial, we select five representative network inference methods (Pearson, Euclidean, MI, Lasso, Phit) spanning five types (Correlation, Distance, Information, Regression and Proportionality) and two strategies (Scan.interp and Scan.perturb) to infer cell-specific miRNA regulation from K562 single-cell RNA-sequencing data. The prior information of miRNA targets has three cases: None (no prior information), TargetScan (prior information of TargetScan), ENCORI (prior information of ENCORI).
95+
The utility functions for scanning sample-specific miRNA regulation are collected in two source files: **Scan.interp.R** (using a linear interpolation strategy) and **Scan.perturb.R** (using a statistical perturbation strategy). For a large-scale dataset (e.g. the number of samples is more than 100), we recommend users selecting the network inference methods with better efficiency or higher scalability (i.e. less runtime). For example, in our work, as for the linear interpolation strategy (Scan.interp), the runtime of 7 out of 27 network inference methods (Pearson, Z-score, Bcor, Wcor, Phit, Phis and Rhop) is less than an hour for both K562 and BRCA datasets, and have a good efficiency or scalability. In addition, for the statistical perturbation strategy (Scan.perturb), the runtime of 11 out of 27 network inference methods (Pearson, Z-score, Bcor, Wcor, Euclidean, Manhattan, Canberra, Chebyshev, Phit, Phis and Rhop) is less than an hour in both K562 and BRCA datasets, indicating a good efficiency or scalability too.
96+
97+
In this tutorial, we select five representative network inference methods (Pearson, Euclidean, MI, Lasso, Phit) spanning five types (Correlation, Distance, Information, Regression and Proportionality) and two strategies (Scan.interp and Scan.perturb) to infer cell-specific miRNA regulation from small-scale K562 single-cell RNA-sequencing data. The prior information of miRNA targets has three cases: None (no prior information), TargetScan (prior information of TargetScan), ENCORI (prior information of ENCORI).
9698

9799
```{r, eval=TRUE, include=TRUE}
98100
# No prior information with Scan.interp
@@ -331,6 +333,7 @@ AP_None_rank <- rank(AP_None)
331333
AP_TargetScan_rank <- rank(AP_TargetScan)
332334
AP_ENCORI_rank <- rank(AP_ENCORI)
333335
AP_rank <- (AP_None_rank + AP_TargetScan_rank + AP_ENCORI_rank)/3
336+
AP_rank
334337
```
335338

336339
# Efficiency comparison
@@ -341,13 +344,15 @@ For efficiency comparison, we compare the runtime of different combinations in t
341344
Time <- c(Scan.interp_Pearson_runningtime_NULL, Scan.interp_Euclidean_runningtime_NULL, Scan.interp_MI_runningtime_NULL, Scan.interp_Lasso_runningtime_NULL, Scan.interp_Phit_runningtime_NULL, Scan.perturb_Pearson_runningtime_NULL, Scan.perturb_Euclidean_runningtime_NULL, Scan.perturb_MI_runningtime_NULL, Scan.perturb_Lasso_runningtime_NULL, Scan.perturb_Phit_runningtime_NULL)
342345
343346
Time_rank <- rank(-Time)
347+
Time_rank
344348
```
345349

346350
# Optimal combination selection
347351
For selecting optimal combination, we consider both accuracy and efficiency and use an overall rank score [28] to evaluate the performance of each combination. A combination with a larger overall rank score is regarded as a optimal combination.
348352

349353
```{r, eval=TRUE, include=TRUE}
350354
Overall_rank <- (AP_rank + Time_rank)/2
355+
Overall_rank
351356
```
352357

353358
# Conclusions

Scan_tutorial.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111

1212
<meta name="author" content=" Junpeng Zhang (zjp@dali.edu.cn) School of Engineering, Dali University" />
1313

14-
<meta name="date" content="2024-04-08" />
14+
<meta name="date" content="2024-04-22" />
1515

1616
<title>Tutorial for scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data</title>
1717

@@ -727,7 +727,7 @@ <h1 class="title toc-ignore">Tutorial for scanning sample-specific miRNA regulat
727727
<p class="author-name">\
728728
Junpeng Zhang (zjp@dali.edu.cn)\
729729
School of Engineering, Dali University</p>
730-
<h4 class="date">2024-04-08</h4>
730+
<h4 class="date">2024-04-22</h4>
731731

732732
</div>
733733

@@ -825,7 +825,8 @@ <h1><span class="header-section-number">3</span> Data preparation</h1>
825825
</div>
826826
<div id="predicting-sample-specific-mirna-mrna-regulatory-networks" class="section level1" number="4">
827827
<h1><span class="header-section-number">4</span> Predicting sample-specific miRNA-mRNA regulatory networks</h1>
828-
<p>The utility functions for scanning sample-specific miRNA regulation are collected in two source files: <strong>Scan.interp.R</strong> (using a linear interpolation strategy) and <strong>Scan.perturb.R</strong> (using a statistical perturbation strategy). In this tutorial, we select five representative network inference methods (Pearson, Euclidean, MI, Lasso, Phit) spanning five types (Correlation, Distance, Information, Regression and Proportionality) and two strategies (Scan.interp and Scan.perturb) to infer cell-specific miRNA regulation from K562 single-cell RNA-sequencing data. The prior information of miRNA targets has three cases: None (no prior information), TargetScan (prior information of TargetScan), ENCORI (prior information of ENCORI).</p>
828+
<p>The utility functions for scanning sample-specific miRNA regulation are collected in two source files: <strong>Scan.interp.R</strong> (using a linear interpolation strategy) and <strong>Scan.perturb.R</strong> (using a statistical perturbation strategy). For a large-scale dataset (e.g. the number of samples is more than 100), we recommend users selecting the network inference methods with better efficiency or higher scalability (i.e. less runtime). For example, in our work, as for the linear interpolation strategy (Scan.interp), the runtime of 7 out of 27 network inference methods (Pearson, Z-score, Bcor, Wcor, Phit, Phis and Rhop) is less than an hour for both K562 and BRCA datasets, and have a good efficiency or scalability. In addition, for the statistical perturbation strategy (Scan.perturb), the runtime of 11 out of 27 network inference methods (Pearson, Z-score, Bcor, Wcor, Euclidean, Manhattan, Canberra, Chebyshev, Phit, Phis and Rhop) is less than an hour in both K562 and BRCA datasets, indicating a good efficiency or scalability too.</p>
829+
<p>In this tutorial, we select five representative network inference methods (Pearson, Euclidean, MI, Lasso, Phit) spanning five types (Correlation, Distance, Information, Regression and Proportionality) and two strategies (Scan.interp and Scan.perturb) to infer cell-specific miRNA regulation from small-scale K562 single-cell RNA-sequencing data. The prior information of miRNA targets has three cases: None (no prior information), TargetScan (prior information of TargetScan), ENCORI (prior information of ENCORI).</p>
829830
<pre class="r"><code># No prior information with Scan.interp
830831
source(&quot;R/Scan.interp.R&quot;)
831832
Scan.interp_Pearson_timestart &lt;- Sys.time()
@@ -1058,8 +1059,8 @@ <h1><span class="header-section-number">5</span> Accuracy comparison</h1>
10581059
AP_ENCORI_rank &lt;- rank(AP_ENCORI)
10591060
AP_rank &lt;- (AP_None_rank + AP_TargetScan_rank + AP_ENCORI_rank)/3
10601061
AP_rank</code></pre>
1061-
<pre><code>## [1] 6.000000 4.333333 3.333333 10.000000 3.333333 5.333333 3.000000
1062-
## [8] 5.000000 9.000000 5.666667</code></pre>
1062+
<pre><code>## [1] 6.000000 4.333333 3.333333 9.666667 3.333333 5.333333 3.000000 5.000000
1063+
## [9] 9.333333 5.666667</code></pre>
10631064
</div>
10641065
<div id="efficiency-comparison" class="section level1" number="6">
10651066
<h1><span class="header-section-number">6</span> Efficiency comparison</h1>
@@ -1076,8 +1077,8 @@ <h1><span class="header-section-number">7</span> Optimal combination selection</
10761077
<p>For selecting optimal combination, we consider both accuracy and efficiency and use an overall rank score [28] to evaluate the performance of each combination. A combination with a larger overall rank score is regarded as a optimal combination.</p>
10771078
<pre class="r"><code>Overall_rank &lt;- (AP_rank + Time_rank)/2
10781079
Overall_rank</code></pre>
1079-
<pre><code>## [1] 7.500000 4.666667 3.166667 5.500000 3.666667 7.666667 5.500000 5.500000
1080-
## [9] 5.500000 6.333333</code></pre>
1080+
<pre><code>## [1] 7.500000 4.666667 3.166667 5.333333 3.666667 7.666667 5.500000 5.500000
1081+
## [9] 5.666667 6.333333</code></pre>
10811082
</div>
10821083
<div id="conclusions" class="section level1" number="8">
10831084
<h1><span class="header-section-number">8</span> Conclusions</h1>

0 commit comments

Comments
 (0)