-
Notifications
You must be signed in to change notification settings - Fork 0
Danylo16/man-fractal-analysis
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
ย | ย | |||
ย | ย | |||
ย | ย | |||
ย | ย | |||
ย | ย | |||
ย | ย | |||
ย | ย | |||
ย | ย | |||
Repository files navigation
## Project background This repository contains code and results from my student research project (Junior Academy of Sciences of Ukraine, 2024) on **Fractal and Seasonal Analysis of Time Series**. ๐ Full paper: [docs/MAN_Fractal_Analysis.pdf](docs/MAN_Fractal_Analysis.pdf) # Fractal and Seasonal Time Series Analysis This repository contains code and results from my Junior Academy of Sciences (ะะะ) research project on **Fractal Properties and Forecasting of Time Series**. The work explores the use of Hurst exponent, Schuster periodogram, ACF/PACF, and SARIMAX/XGBoost models for detecting persistence, cycles, and forecasting. ## Structure - `docs/` โ PDF of the original paper, figures, and abstract - `src/` โ clean Python implementations of methods described in the paper - `notebooks/` โ reproducible experiments and visualizations - `data/` โ sample dataset ## Highlights - โ Hurst exponent via R/S analysis - โ Schuster periodogram with dominant peak detection - โ ADF test for stationarity - โ SARIMAX and XGBoost forecasts - โ Full reproducibility in Jupyter Notebook ## Quickstart ```bash pip install -r requirements.txt jupyter notebook notebooks/analysis.ipynb
About
Research toolkit based on my Junior Academy of Sciences project. Implements Hurst exponent (R/S), Schuster periodogram, ADF stationarity tests, and SARIMAX/XGBoost forecasting
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published