DataVolt is an enterprise-grade framework for building and maintaining scalable data engineering pipelines. It provides a comprehensive suite of tools for data ingestion, transformation, and processing, enabling organizations to standardize their data operations and accelerate development cycles.
At the core of DataVolt is the concept of VoltModules: modular, domain-scoped directories (mini_dirs) that encapsulate a single use case or data engineering workflow. Each VoltModule follows a consistent internal structure and pattern, making it easy to:
- Reuse, extend, or compose modules for new domains or projects
- Standardize data engineering practices across teams
- Rapidly spin up new pipelines by combining or customizing VoltModules
VoltModules can cover a wide range of data engineering needs—from market analysis to tokenization, feature engineering, and beyond. The repository provides a rich set of ready-to-use modules, and you can easily add your own or extend existing ones.
Note: The structure below is an illustrative example of how DataVolt is organized around VoltModules and shared utilities. Your actual repository may differ. To view your current structure, use a tool like
tree
orls
in your project root.
DataVolt/
├── modules/ # Collection of VoltModules (domain-specific mini_dirs)
│ ├── market_analysis/ # Example VoltModule: Market Analysis
│ │ ├── __init__.py
│ │ └── ... # Module-specific logic
│ ├── tokenization/ # Example VoltModule: Tokenization
│ │ ├── __init__.py
│ │ └── ...
│ └── ... # Add or extend VoltModules as needed
├── loaders/ # Data Ingestion Layer (shared utilities)
│ ├── __init__.py
│ └── ...
├── preprocess/ # Data Transformation Layer (shared utilities)
│ ├── __init__.py
│ └── ...
├── ext/ # Extension Layer (logging, custom steps, etc.)
│ ├── logger.py
│ └── ...
└── ...
- modules/: Houses all VoltModules, each in its own directory, following a common pattern.
- loaders/, preprocess/, ext/: Provide shared utilities and frameworks for use within VoltModules or standalone.
- VoltModules: Modular, domain-scoped, and reusable mini_dirs for any data engineering use case
- Rapid Customization: Add, extend, or compose modules to fit evolving requirements
- Standardization: Consistent patterns and internal structure across all modules
- Comprehensive Toolkit: Everything needed for data engineering, from ingestion to advanced analytics
pip install datavolt
Or with uv:
uv install datavolt
from datavolt.modules.market_analysis import MarketAnalysisModule
module = MarketAnalysisModule(config={...})
result = module.run()
- Create a new directory under
modules/
(e.g.,my_use_case/
) - Add an
__init__.py
and implement your logic following the VoltModule pattern - Import and use your module as needed
from datavolt.loaders.csv_loader import CSVLoader
from datavolt.preprocess.pipeline import PreprocessingPipeline
loader = CSVLoader(file_path="data.csv")
dataset = loader.load()
pipeline = PreprocessingPipeline([...])
processed_dataset = pipeline.run(dataset)
- Add new VoltModules for new domains or workflows
- Plug in tools (e.g., new loaders, preprocessors) into existing modules
- Compose modules to build complex pipelines
- Market analysis, tokenization, and domain-specific analytics
- Standardized, reproducible data preprocessing
- Scalable machine learning and feature engineering pipelines
- Integration with cloud, SQL, and ML frameworks
We welcome contributions! To add a new VoltModule or extend the framework:
- Fork the repository
- Create a feature branch (
git checkout -b feature/my-module
) - Add your module under
modules/
and follow the VoltModule pattern - Commit and push your changes
- Open a Pull Request
DataVolt is distributed under the MIT License. See LICENSE
for details.
- Documentation: DataVolt Docs
- Issue Tracking: GitHub Issues
- Professional Support: Contact allanw.mk@gmail.com
DataVolt: Empowering Modular Data Engineering Excellence