Skip to content

HeLad0X/ML_Regression_Classification

Repository files navigation

Machine Learning Regression Classification Project

Current Implementation

  • Linear Regression using RAPIDS cuML
  • Custom Gradient Descent Implementation with GPU Acceleration
  • Polynomial Feature Transformation
  • Model Hyperparameter Tuning

Features

  • GPU-accelerated model training using RAPIDS cuML
  • GridSearchCV for optimal hyperparameter selection
  • Pipeline implementation for data preprocessing and model training
  • Custom gradient descent implementation with cupy for GPU optimization
  • Model persistence and loading capabilities
  • Comprehensive model evaluation metrics

Model Evaluation Metrics

  • Mean Squared Error (MSE)
  • Root Mean Squared Error (RMSE)
  • Mean Absolute Error (MAE)
  • R² Score
  • Adjusted R² Score

Project Structure

LinearRegression/ ├── cuml_linear_regression.py # RAPIDS cuML implementation ├── gradient_descent.py # Custom gradient descent ├── test_model.py # Model evaluation ├── config.py # Configuration settings └── preprocess_df.py # Data preprocessing

Future Additions

  • [To be added as the project evolves]

About

Regression project on Air bnb dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages