- Linear Regression using RAPIDS cuML
- Custom Gradient Descent Implementation with GPU Acceleration
- Polynomial Feature Transformation
- Model Hyperparameter Tuning
- GPU-accelerated model training using RAPIDS cuML
- GridSearchCV for optimal hyperparameter selection
- Pipeline implementation for data preprocessing and model training
- Custom gradient descent implementation with cupy for GPU optimization
- Model persistence and loading capabilities
- Comprehensive model evaluation metrics
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² Score
- Adjusted R² Score
LinearRegression/ ├── cuml_linear_regression.py # RAPIDS cuML implementation ├── gradient_descent.py # Custom gradient descent ├── test_model.py # Model evaluation ├── config.py # Configuration settings └── preprocess_df.py # Data preprocessing
- [To be added as the project evolves]