Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "ChainRules"
uuid = "082447d4-558c-5d27-93f4-14fc19e9eca2"
version = "1.32.1"
version = "1.33.0"

[deps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
Expand Down
28 changes: 28 additions & 0 deletions src/rulesets/LinearAlgebra/factorization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -551,3 +551,31 @@ function rrule(::typeof(getproperty), F::T, x::Symbol) where {T <: Cholesky}
end
return getproperty(F, x), getproperty_cholesky_pullback
end

# `det` and `logdet` for `Cholesky`
function rrule(::typeof(det), C::Cholesky)
y = det(C)
diagF = _diag_view(C.factors)
function det_Cholesky_pullback(ȳ)
ΔF = Diagonal(_x_divide_conj_y.(2 * ȳ * conj(y), diagF))
ΔC = Tangent{typeof(C)}(; factors=ΔF)
return NoTangent(), ΔC
end
return y, det_Cholesky_pullback
end

function rrule(::typeof(logdet), C::Cholesky)
y = logdet(C)
diagF = _diag_view(C.factors)
function logdet_Cholesky_pullback(ȳ)
ΔC = Tangent{typeof(C)}(; factors=Diagonal(_x_divide_conj_y.(2 * ȳ, diagF)))
return NoTangent(), ΔC
end
return y, logdet_Cholesky_pullback
end

# Return `x / conj(y)`, or a type-stable 0 if `iszero(x)`
function _x_divide_conj_y(x, y)
z = x / conj(y)
return iszero(x) ? zero(z) : z
end
34 changes: 34 additions & 0 deletions test/rulesets/LinearAlgebra/factorization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -432,5 +432,39 @@ end
ΔX_symmetric = chol_back_sym(Δ)[2]
@test sym_back(ΔX_symmetric)[2] ≈ dX_pullback(Δ)[2]
end

@testset "det and logdet (uplo=$p)" for p in (:U, :L)
@testset "$op" for op in (det, logdet)
@testset "$T" for T in (Float64, ComplexF64)
n = 5
# rand (not randn) so det will be postive, so logdet will be defined
A = 3 * rand(T, (n, n))
X = Cholesky(A * A' + I, p, 0)
X̄_acc = Tangent{typeof(X)}(; factors=Diagonal(randn(T, n))) # sensitivity is always a diagonal
test_rrule(op, X ⊢ X̄_acc)

# return type
_, op_pullback = rrule(op, X)
X̄ = op_pullback(2.7)[2]
@test X̄ isa Tangent{<:Cholesky}
@test X̄.factors isa Diagonal

# zero co-tangent
X̄ = op_pullback(0.0)[2]
@test all(iszero, X̄.factors)
end
end

@testset "singular ($T)" for T in (Float64, ComplexF64)
n = 5
L = LowerTriangular(randn(T, (n, n)))
L[1, 1] = zero(T)
X = cholesky(L * L'; check=false)
detX, det_pullback = rrule(det, X)
ΔX = det_pullback(rand())[2]
@test iszero(detX)
@test ΔX.factors isa Diagonal && all(iszero, ΔX.factors)
end
end
end
end