Skip to content

MIT-Lu-Lab/cuPDLPx

Repository files navigation

cuPDLPx: A GPU-Accelerated First-Order LP Solver

License GitHub release PyPI version arXiv arXiv

cuPDLPx is a GPU-accelerated linear programming solver based on a restarted Halpern PDHG method specifically tailored for GPU architectures. It incorporates a Halpern update scheme, an adaptive restart scheme, and a PID-controlled primal weight, resulting in substantial empirical improvements over its predecessor, cuPDLP, on standard LP benchmark suites.

Our work is presented in two papers:

Getting started

Follow these steps to build the solver and verify its installation.

Requirements

  • An NVIDIA GPU with CUDA support (≥12.4 required).
  • A C toolchain (gcc) and the NVIDIA CUDA Compiler (nvcc).

Build from Source

Clone the repository and compile the project using CMake.

git clone git@github.com:MIT-Lu-Lab/cuPDLPx.git
cd cuPDLPx
cmake -B build
cmake --build build --clean-first

This will create the solver binary at ./build/cupdlpx.

Verifying the Installation

Run a small test problem to confirm that the solver was built correctly.

# 1. Download a test instance from the MIPLIB library
wget -P test/ https://miplib.zib.de/WebData/instances/2club200v15p5scn.mps.gz

# 2. Solve the problem and write output to the current directory (.)
./build/cupdlpx test/2club200v15p5scn.mps.gz test/

If the solver runs and creates output files, your installation is successful.

Usage Guide

Command-Line Interface

The solver is invoked with the following syntax, specifying an input file and an output directory.

./build/cupdlpx [OPTIONS] <mps_file> <output_directory>

Arguments

  • <mps_file>: The path to the input linear programming problem. Both plain (.mps) and gzipped (.mps.gz) files are supported.
  • <output_directory>: The directory where the output files will be saved.

Solver Options

Option Type Description Default
-h, --help flag Display the help message. N/A
-v, --verbose flag Enable verbose logging. false
--time_limit double Time limit in seconds. 3600.0
--iter_limit int Iteration limit. 2147483647
--eps_opt double Relative optimality tolerance. 1e-4
--eps_feas double Relative feasibility tolerance. 1e-4
--eps_infeas_detect double Infeasibility detection tolerance. 1e-10

Output Files

The solver generates three text files in the specified <output_directory>. The filenames are derived from the input file's basename. For an input INSTANCE.mps.gz, the output will be:

  • INSTANCE_summary.txt: Contains solver statistics, timings, and termination information.
  • INSTANCE_primal_solution.txt: The primal solution vector.
  • INSTANCE_dual_solution.txt: The dual solution vector.

Python Interface

In addition to the command-line, cuPDLPx provides a Python interface (cupdlpx)
for building and solving LPs directly with NumPy and SciPy.

  • High-level, Pythonic API similar to commercial solvers.
  • Supports dense and sparse matrices.
  • Provides easy parameter management and solution attributes.

Install from PyPI:

pip install cupdlpx

Or build from source:

git clone https://github.com/MIT-Lu-Lab/cuPDLPx.git
cd cuPDLPx
pip install .

See the cupdlpx guide for full usage instructions, examples, and API details.

C Interface

Besides the command-line and Python interfaces, cuPDLPx also provides a C API for directly solving LPs in memory. This is useful when integrating cuPDLPx into other C/C++ projects or when generating problems programmatically.

Functions and Parameters

The C API involves two main functions:

lp_problem_t* create_lp_problem(
    const double* c,                   // objective vector (length n)
    const matrix_desc_t* A,            // constraint matrix (m×n)
    const double* con_lb,              // constraint lower bounds (length m)
    const double* con_ub,              // constraint upper bounds (length m)
    const double* var_lb,              // variable lower bounds (length n)
    const double* var_ub,              // variable upper bounds (length n)
    const double* c0                   // scalar objective offset
);

cupdlpx_result_t* solve_lp_problem(
    const lp_problem_t* prob,
    const pdhg_parameters_t* params    // NULL → use default parameters
);

create_lp_problem parameters:

  • objective_c: Objective vector. If NULL, defaults to all zeros.
  • A_desc: Matrix descriptor. Supports matrix_dense, matrix_csr, matrix_csc, matrix_coo.
  • con_lb: Constraint lower bounds. If NULL, defaults to all -INFINITY.
  • con_ub: Constraint upper bounds. If NULL, defaults to all +INFINITY.
  • var_lb: Variable lower bounds. If NULL, defaults to all 0.0.
  • var_ub: Variable upper bounds. If NULL, defaults to all +INFINITY.
  • objective_constant: Scalar constant term added to the objective value. If NULL, defaults to 0.0.

solve_lp_problem parameters:

  • prob: An LP problem built with create_LP_problem.
  • params: Solver parameters. If NULL, the solver will use default parameters.

Example: Solving a Small LP

#include "cupdlpx.h"
#include <math.h>
#include <stdio.h>

int main() {
    int m = 3; // number of constraints
    int n = 2; // number of variables

    // Dense matrix A
    double A[3][2] = {
        {1.0, 2.0},
        {0.0, 1.0},
        {3.0, 2.0}
    };

    // Describe A
    matrix_desc_t A_desc;
    A_desc.m = m; A_desc.n = n;
    A_desc.fmt = matrix_dense;
    A_desc.zero_tolerance = 0.0;
    A_desc.data.dense.A = &A[0][0];

    // Objective coefficients
    double c[2] = {1.0, 1.0};

    // Constraint bounds: l <= A x <= u
    double l[3] = {5.0, -INFINITY, -INFINITY};
    double u[3] = {5.0, 2.0, 8.0};

    // Build the problem
    lp_problem_t* prob = create_lp_problem(
        c, &A_desc, l, u, NULL, NULL, NULL);

    // Solve (NULL → use default parameters)
    cupdlpx_result_t* res = solve_lp_problem(prob, NULL);

    printf("Termination reason: %d\n", res->termination_reason);
    printf("Primal objective: %.6f\n", res->primal_objective_value);
    printf("Dual objective:   %.6f\n", res->dual_objective_value);
    for (int j = 0; j < res->num_variables; ++j) {
        printf("x[%d] = %.6f\n", j, res->primal_solution[j]);
    }

    lp_problem_free(prob);
    cupdlpx_result_free(res);

    return 0;
}

Reference

If you use cuPDLPx or the ideas in your work, please cite the source below.

@article{lu2025cupdlpx,
  title={cuPDLPx: A Further Enhanced GPU-Based First-Order Solver for Linear Programming},
  author={Lu, Haihao and Peng, Zedong and Yang, Jinwen},
  journal={arXiv preprint arXiv:2507.14051},
  year={2025}
}

@article{lu2024restarted,
  title={Restarted Halpern PDHG for linear programming},
  author={Lu, Haihao and Yang, Jinwen},
  journal={arXiv preprint arXiv:2407.16144},
  year={2024}
}

License

cuPDLPx is licensed under the Apache 2.0 License. See the LICENSE file for details.