A compilation of quantum-native solver techniques that can be mapped and ran on a quantum computer. Compiled by Onri Jay Benally.
Primary URL for the repository: https://github.com/OJB-Quantum/Quantum-Native-Solvers
The purpose of this repository is to monitor computational techniques (over time) that can be used to determine whether a working mathematical or computational framework of interest may be eligible for quantum simulation.
Interestingly, some models such as the Landau-Lifshitz-Gilbert (LLG) equation (used in micromagnetism studies) can be systematically derived from Lindbladian dynamics, which are based on the general form of Markovian master equations used to describe open quantum systems. Another quantum analog of the LLG also exists based on quantum correlation dynamics, which acknowledges a difference from open quantum systems in the previous example. LLG solvers are typically implemented on classical computing resources, especially that of general-purpose graphics processing units (GPUs). However, through careful derivation, supported by literature, such a method can transcend the classical description and becomes eligible for quantum simulation algorithms, as well as numerically exact and analytical verifications. Although this is not always the case for other classical or semi-classical frameworks and models, examples like these that are physics-informed or physics-supported should encourage one to explore the limits.
-
Quantum-native (adj.): designed for, and inherently dependent upon, quantum-mechanical resources, so that its core function, scaling, or correctness requires nonclassical phenomena (for example, superposition, interference, entanglement), rather than merely imitating them on classical hardware.
-
quantum: âBorrowed from Latin quantum,â historically âhow much; as much asâ (neuter of quantus), later specialized to a discrete physical amount. - Oxford English Dictionary; see also Oxfordâs gloss tying quantum to quantus.
-
native: âFrom Latin nativus (âinborn; produced by birthâ), via Middle English/French,â yielding senses such as âinnate, natural; belonging by birth.â - Oxford English Dictionary.
(A Quantum Simulation Taxonomy)
QuantumâNative Simulation Techniques
ââ I. Latticeâkinetic/ Automata family
â ââ A. Quantum Lattice Boltzmann (QLBM)
â â ââ A1. âQuantum-walkâequivalentâ formulations (QLBM â quantum walk)
â â ââ A2. Carlemanâlinearized LB (LB-Carleman, faultâtolerant oriented)
â â ââ A3. Multiâcircuit QLBM for noisy devices
â â ââ A4. Early hardware demos (advection-diffusion on QPU)
â ââ B. Quantum Lattice Gas Automata (QLGA)
â â ââ B1. Measurementâbased QLG for Navier-Stokes
â â ââ B2. Efficient QLGA singleâstep schemes
â â ââ B3. Fullyâquantum LGA building blocks (MHD/NSâready)
â ââ C. Quantum Walks/ Quantum Cellular Automata (QCA)
â ââ C1. Diracâtype dynamics (transport, diffusion, barriers & tunneling)
â ââ C2. Schrödingerâtype dynamics (continuousâtime quantum walk â freeâparticle propagation,
â â discreteâtime quantum walk approximating Laplacian)
â ââ C3. Gaugeâfieldâcoupled quantum walk/QCA (U(1), SU(2) links for both Dirac & Schrödinger)
â
ââ II. Quantum PDE & LinearâDifferential Equation solvers
â ââ D. Quantum LinearâSystem Algorithms (HHL & blockâencoding, Poisson)
â ââ E. Linear Differential Equations (LDE) oracles (Berry-Childs-Kothari)
â ââ F. Carleman linearization for nonlinear ODE/PDE (Navier-Stokes regimes)
â ââ G. Quantum Finite Elements (QuâFEM/ QâFEM) + qâMultigrid
â ââ H. DiracâPDE solvers
â â ââ H1. Quantum-walkâbased Dirac firstâorder hyperbolic solvers
â â ââ H2. QLGA spinor kernels for relativistic fluids
â â ââ H3. LCU/ qubitization of the Dirac operator (mass + kinetic terms)
â ââ I. SchrödingerâPDE solvers
â ââ I1. Spectral (Fourier) discretization + Trotter/LCU propagation
â ââ I2. Chebyshevâpolynomial and interactionâpicture schemes
â ââ I3. Variational linearâsolver (VQLS) for stationary Schrödinger equation
â
ââ III. Variational & Hybrid Dynamics
â ââ J. Variational Quantum Simulation (VQS: real & imaginary time)
â ââ K. Quantum ImaginaryâTime Evolution (QITE) + accelerators
â ââ L. Variational Quantum Linear Solver (VQLS) for scattering/PDE
â ââ M. Quantum CarâParrinello Molecular Dynamics (QCPMD, NISQ)
â ââ N. Variational Dirac solvers
â â ââ N1. Realâtime VQS for Dirac spinor dynamics
â â ââ N2. QITE for massive Dirac groundâstate preparation
â ââ O. Variational Schrödinger solvers
â â ââ O1. Realâtime VQS with hardwareâefficient ansĂ€tze for nonârelativistic dynamics
â â ââ O2. Imaginaryâtime VQS/ QITE for groundâstate Schrödinger problems
â ââ P. ThermoâFieldâDouble (TFD) & FiniteâTemperature Variational Methods
â ââ P1. QAOAâstyle alternatingâoperator TFD preparation (intersystem entangler + H)
â â â finiteâtemperature Gibbs states via depthâp cooling schedules
â â â early trappedâion and superconducting demonstrations
â ââ P2. H_TFDâgroundâstate VQE (engineered H_TFD whose ground state â |TFD(ÎČ)â©)
â â â SYKâmodel implementations; scalable to interacting fermions
â ââ P3. Variational Quantum Thermalizer (VQT), freeâenergy minimization
â â â entropy estimation via series/auxiliary models; highâT guarantees
â ââ P4. TFDâQITE/ imaginaryâtime purification (unitary approximants to e^{-ÎČH/2})
â â â purely unitary circuits with ancillaâassisted updates
â ââ P5. TFDâVQS for dynamical correlators & spectroscopy
â â â finiteâT C(t), optical/UVâvis spectra, nonâequilibrium quenches
â ââ P6. Widthâreduction via entanglement forging / circuitâcutting
â â â simulate a 2Nâqubit TFD using widthâN circuits
â ââ P7. Gaugeâtheory & holographic/SYK TFD variants
â â â latticeâgauge finiteâT phases; wormhole/OTOâcorrelatorâmotivated targets
â ââ P8. Noiseâaware TFD compilation & errorâmitigation
â â â noise thresholds favoring shallow QAOAâTFD; noiseâassisted thermalization
â ââ P9. NonâTFD thermal comparators (PSA, canonical TPQ states) for benchmarking
â
ââ IV. Hamiltonian Simulation & Scattering
â ââ P. Realâspace electronâdynamics (LCU/ qubitization/ Trotter)
â ââ Q. Scattering & crossâsection algorithms (Greenâs functions, Sâmatrix)
â ââ R. Quantumâwalk tunneling/ barrier transport
â ââ S. DiracâHamiltonian simulation
â â ââ S1. Productâformula (TrotterâSuzuki) for γ·p + m terms
â â ââ S2. LCU/ qubitization of relativistic kinetic operator
â â ââ S3. Interactionâpicture and Dysonâseries methods for timeâdependent Dirac fields
â ââ T. SchrödingerâHamiltonian simulation
â â ââ T1. Finiteâdifference/planeâwave discretization + Trotter
â â ââ T2. LCU/ qubitization of kinetic + potential operators
â â ââ T3. Interactionâpicture schemes for driven potentials
â ââ U. FiniteâTemperature Correlators via TFD (Kubo/SchwingerâKeldysh/OTOCs)
â ââ U1. Linearâresponse & spectral functions at finiteâT via |TFD(ÎČ)â© (Kubo framework)
â ââ U2. Outâofâtimeâorder correlators (OTOCs) from doubledâregister/TFD circuits
â ââ U3. SchwingerâKeldysh contour â TFD mapping for realâtime finiteâT observables
â
ââ V. Stochastic & MonteâŻCarlo family
â ââ O. Quantum MonteâŻCarlo (classically executed, physicsânative)
â â ââ O1. Variational MonteâŻCarlo (VMC; |Κ|ÂČ sampling)
â â ââ O2. Diffusion MonteâŻCarlo (DMC; imaginaryâtime projection, fixedânode)
â â ââ O3. PathâIntegral QMC (PIMC; finiteâT & groundâstate PIGS)
â â ââ O4. AuxiliaryâField QMC (AFQMC; Hubbard-Stratonovich)
â â ââ O5. Stochastic Series Expansion (SSE; loop/cluster updates)
â ââ P. Quantumâaccelerated MonteâŻCarlo (hardwareânative)
â â ââ P1. Quantum Amplitude Estimation (QAE; quadratic sampling speedups)
â â ââ P2. Quantum Metropolis sampling (thermal states without sign problem)
â â ââ P3. Hybrid QMC w/ QCâgenerated trials (e.g., QSCI â AFQMC)
â ââ Q. Quantum Trajectories (MonteâŻCarlo wave function, stochastic Schrödinger)
â â ââ Q1. Quantum jumps/ MCWF unraveling of Lindblad
â â ââ Q2. Adiabaticâmasterâequation trajectories; restrictedâMCWF diagnostics
â ââ R. SchrödingerâQMC variants
â â ââ R1. Diffusion MonteâŻCarlo with quantumâenhanced trialâwaveâfunction optimization
â â ââ R2. PathâIntegral QMC for realâtime (Keldysh) Schrödinger evolution
â ââ S. DiracâQMC variants
â ââ S1. Stochastic Dirac equation (stochastic quantization of relativistic fields)
â ââ S2. Quantumâwalk based MonteâŻCarlo for relativistic barrier tunneling
â
ââ VI. OpenâSystem (Lindblad) solvers & Magnetization links
â ââ R. Lindblad simulators on quantum hardware
â â ââ R1. LCU/ Stinespringâdilation & qubitizationâstyle algorithms
â â ââ R2. Randomized productâformula & sampling compilers for GKSL
â â ââ R3. Quantumâtrajectory simulators with additive O(T + logâŻ1/Δ) scaling (classâdependent)
â â ââ R4. Liouvilleâspace/ TFD vectorization of GKSL (Choi/JamioĆkowski; |Ïâ©â© mapping)
â ââ S. ClassicalâHPC Lindblad solvers with quantum trajectories (largeâN pureâstate sampling)
â ââ T. Lindblad â LL/LLG mappings for magnetization dynamics
â ââ T1. LL from Lindbladian dynamics (scaleâseparated local meanâfield regimes)
â ââ T2. Microscopic LLG coefficients via NEGF/scattering formulations
â ââ T3. QuantumâLLG analogs and constraints from entanglement/ nonâMarkovianity
â
ââ VII. Emerging quantumânative simulation families
â ââ A. Quantum TensorâNetwork Simulators (MPS, PEPS, TTN) for PDEs & manyâbody states
â ââ B. Quantum Signal Processing/ QSVTâbased PDE solvers
â â (Chebyshev and polynomial transformations for evolution and linear systems)
â ââ C. Fractional & Nonâlocal Operator Solvers
â â (fractional Laplacian, Riesz derivatives, etc.)
â ââ D. Quantum Stochastic Differential Equations (QSDE) &
â â nonâMarkovian openâsystem dynamics
â ââ E. Quantum LatticeâGaugeâTheory Engines
â â (U(1), SU(2), SU(3) gauge fields, plaquette unitaries)
â ââ F. QuantumâAccelerated AdaptiveâMeshâRefinement (AMR)
â â (amplitudeâestimationâdriven error indicators)
â ââ G. QuantumâEnhanced RealâTime TimeâDependent DensityâFunctional Theory (RTâTDDFT)
â ââ H. Quantum WignerâFunction/ PhaseâSpace Solvers
â â (discrete Wigner representation + FFTâbased evolution)
â ââ I. Quantum Uncertainty Quantification (UQ) for PDEs
â â (parameterâsampling via QAE)
â ââ J. Quantum SpectralâElement/ hpâFiniteâElement Methods
â â (highâorder basis encoded in qubit registers)
â ââ K. Quantum MetropolisâHastings for Thermodynamic Ensembles of PDE Solutions
â ââ L. Hybrid QuantumâClassical Domain Decomposition (Schwarz) for largeâscale PDEs
â ââ M. QuantumâAccelerated SparseâMatrix Preconditioners
â â (quantum BiCGSTAB, quantum multigrid)
â ââ N. Quantum Embedding & MultiâScale Methods
â (DMFT, QM/MM, impurity solvers, quantumâaccelerated selfâenergy evaluation)
â
ââ VIII. Dirac Equation Solvers (relativistic quantum dynamics)
â ââ A. QuantumâWalkâbased Dirac solvers
â â ââ A1. 1âD splitâstep Dirac quantum walk (continuous limit â Dirac equation)
â â ââ A2. 2âD/ 3âD multiâstep Dirac quantum walks (including spinâorbit coupling)
â â ââ A3. Gaugeâfieldâcoupled Dirac quantum walks (U(1) electromagnetic, SU(2) weak)
â â ââ A4. Multiâcircuit Dirac quantum walks for NISQ devices (errorâmitigated implementations)
â ââ B. Quantum LatticeâGas Automata for Dirac dynamics
â â ââ B1. Spinor QLGA kernels (Îłâmatrix encoding on qubits)
â â ââ B2. Dirac-Maxwell QLGA (selfâconsistent coupling of spinor and EM fields)
â â ââ B3. Relativistic fluidâLGA (DiracâMHD, relativistic Navier-Stokes)
â ââ C. Hamiltonianâsimulation of the Dirac operator
â â ââ C1. TrotterâSuzuki product formulas for γ·p + m terms
â â ââ C2. LCU/ qubitization of the Dirac Hamiltonian (including massâgap)
â â ââ C3. Interactionâpicture/ Dysonâseries Dirac simulators for timeâdependent fields
â â ââ C4. Spectralâmethod (Fourier) Dirac simulation (momentumâspace discretization)
â ââ D. Variational & Imaginaryâtime Dirac solvers
â â ââ D1. Realâtime VQS for Dirac spinors (hardwareâefficient ansĂ€tze)
â â ââ D2. QITE for massive Dirac groundâstate preparation
â â ââ D3. AdaptiveâVQE style Dirac dynamics (ADAPTâVQD)
â ââ E. Carlemanâlinearized Diracâtype nonlinear models
â â ââ E1. Dirac-KleinâGordon coupling (scalarâfield interactions)
â â ââ E2. Nonâlinear Dirac (Thirring, GrossâNeveu) via Carleman embedding
â â ââ E3. Dirac-Maxwell-Higgs hybrid systems
â ââ F. Quantum FiniteâElement/ Multigrid for Dirac
â â ââ F1. QFEMâDirac (meshâbased spinor discretization)
â â ââ F2. Diracâmultigrid preconditioners realized with quantum subroutines
â ââ G. Scattering & Sâmatrix for relativistic particles
â â ââ G1. Greenâfunction based Dirac crossâsection algorithms
â â ââ G2. Relativistic quantumâwalk tunneling analysis (Klein paradox)
â â ââ G3. Diracâtimeâdependent scattering (timeâvarying potentials)
â ââ H. Hybrid classicalâquantum Dirac workflows
â ââ H1. Classical spectral Dirac solver + quantum subroutines for highâfrequency modes
â ââ H2. Domainâdecomposition: QC solves interior relativistic region, classical for exterior
â
ââ IX. Schrödinger Equation Solvers (nonârelativistic quantum dynamics)
ââ A. Direct Hamiltonianâsimulation of Schrödinger dynamics
â ââ A1. Spatial discretization (finiteâdifference, planeâwave) + TrotterâSuzuki
â ââ A2. LCU/ qubitization of kinetic (âÂČ) + potential V(x) operators
â ââ A3. Interactionâpicture/ Dysonâseries approaches for timeâdependent potentials
â ââ A4. Highâorder product formulas (e.g., ForestâRuth, Suzukiâ23) for improved accuracy
ââ B. QuantumâPDE solvers specialized for Schrödinger
â ââ B1. LinearâDifferentialâEquation oracle tailored to timeâdependent Schrödinger equation
â ââ B2. Spectral (Fourier) method via Quantum Fourier Transform (QFT) - planeâwave basis
â ââ B3. Chebyshevâpolynomial expansion of the propagator e^{-iHt}
â ââ B4. Pseudoâspectral splitâoperator schemes (FFTâbased) on quantum hardware
ââ C. Variational & Hybrid Schrödinger solvers
â ââ C1. Realâtime VQS with hardwareâefficient ansĂ€tze (e.g., hardwareâefficient, ADAPTâVQE)
â ââ C2. Imaginaryâtime VQS/ QITE for groundâstate preparation of Schrödinger Hamiltonians
â ââ C3. Variational Quantum Linear Solver (VQLS) for stationary Schrödinger equation (Ax = b with A = HâE)
â ââ C4. AdaptiveâVQD for excitedâstate dynamics
ââ D. QuantumâWalk implementations of Schrödinger dynamics
â ââ D1. Continuousâtime quantum walk mapping to freeâparticle Schrödinger (H = âÎ)
â ââ D2. Discreteâtime quantum walk reproducing Laplacian kinetic term via coinâshift construction
â ââ D3. Quantumâwalk based tunneling simulations for arbitrary barrier profiles
ââ E. Quantum Cellular Automata for Schrödinger equation
â ââ E1. Local unitary update rules approximating the Laplacian operator
â ââ E2. Multiâstep QCA with onâsite potential encoding
ââ F. Quantum MonteâŻCarlo methods for Schrödinger equation
â ââ F1. Diffusion MonteâŻCarlo (imaginaryâtime projection) with QCâaccelerated trialâwaveâfunction refinement
â ââ F2. PathâIntegral QMC for realâtime evolution (Keldysh contour) using quantumâenhanced sampling
â ââ F3. Variational MonteâŻCarlo with quantumâgenerated ansĂ€tze (QANSAT)
â ââ F4. Reptation QMC with quantumâassisted move proposals
ââ G. Manyâbody Schrödinger solvers (secondâquantized)
â ââ G1. Electronicâstructure Hamiltonian simulation (quantum chemistry) via LCU/ qubitization
â ââ G2. Quantum Dynamical MeanâField Theory (QDMFT) for lattice models
â ââ G3. Realâtime Greenâfunction methods (KadanoffâBaym) on quantum processors
â ââ G4. Tensorânetworkâinspired hybrid algorithms (e.g., VQEâDMRG hybrids)
ââ H. Hybrid ClassicalâQuantum Schrödinger solvers
â ââ H1. Classical spectral (Fourier) solver + quantum subroutine for highâfrequency phase propagation
â ââ H2. Domainâdecomposition: QC handles subâgrid potentials; classical handles bulk
â ââ H3. Multiâscale coupling of quantumâaccelerated shortârange dynamics with classical longârange Poisson solver
ââ I. Scattering & Sâmatrix for nonârelativistic particles
â ââ I1. Greenâfunction based crossâsection computation (LippmannâSchwinger equation)
â ââ I2. Quantumâwalk tunneling analysis for arbitrary 1âD/ 2âD barrier profiles
â ââ I3. Realâtime Sâmatrix extraction via phaseâestimation on scattered waveâpackets
ââ J. Quantum FiniteâElement/ Multigrid for Schrödinger
ââ J1. Meshâbased Schrödinger solvers with quantum enforcement of continuity/ boundary conditions
ââ J2. Quantumâaccelerated multigrid preconditioners for the Laplacianâplusâpotential operator
ââ J3. Adaptive mesh refinement driven by quantumâmeasured error estimates
| Tier | Typical depth/ qubits | Representative methods |
|---|---|---|
| I. NISQâready | Shallow circuits, few qubits; TFD uses a doubled register (ââŻ2N), but can sometimes be reduced via entanglement forging | Quantum walks; QLBM demos; VQS/ QITE; TFDâQAOA/ variational TFD demos (ions, superconducting); VQT (freeâenergy minimization) at moderateâhigh temperatures; basic amplitudeâestimation variants (MLAE/ IQAE) that avoid phase estimation; minimal openâsystem simulators/ trajectory demos. |
| II. Nearâterm/ hybrid | Shallowâtoâmoderate depth, multiâcircuit/shotâfrugal layouts; selective errorâmitigation or early logicals; width reduction via entanglement forging or circuitâcutting | Multiâcircuit QLBM; LDE oracles; tiny QâFEM; prototype Quantum Metropolis sampling and other Gibbsâprep VQAs; quantumâaccelerated Monte Carlo (MLAE/ IQAEâbased); photonic coâprocessor variants; TFDâQITE / DBâQITE with forging; finiteâT correlators & spectra from TFD (Greenâs functions, Kubo/response) on modest instances. |
| III. Faultâtolerant eligible | Deep circuits, many logical qubits; long coherent evolutions; asymptotically optimal primitives | Fullâscale HHL/ blockâencoding; qubitized Dirac/Schrödinger Hamiltonian simulation; QSVTâbased PDE and linearâsystem solvers; purifiedâGibbs/TFD preparation via blockâencoding/ QSVT; finiteâT response and OTOCs at scale; rigorous openâsystem (Lindblad) simulation algorithms; quantumâenhanced AMR; largeâscale tensorânetwork simulation. |
These algorithms can be executed today on IBMâŻQ, Rigetti, IonQ, or any other gateâmodel device with errorâmitigation. All required primitives are already available in QiskitâŻâ„âŻ2.2 (e.g. QuantumWalkCircuit, VQSDynamics, QITE, AmplitudeEstimation, LindbladEvolution).
| Category | Techniques |
|---|---|
| A. Quantum walks & quantum cellular automata | 1. Diracâtype dynamics (splitâstep quantum walk) 2. Schrödingerâtype dynamics (continuousâtime quantum walkâŻ+âŻdiscreteâtime Laplacian quantum walk) 3. Simple U(1) gaugeâfield coupling (singleâlink) |
| B. Quantum latticeâBoltzmann/ latticeâgas (toy lattices) | 1. âQuantumâwalkâequivalentââ QLBM 2. Early hardware demos (advectionâdiffusion on a fewâsite lattice) 3. Efficient singleâstep QLGA for 1âD/2âD NavierâStokes (few sites) |
| C. Variational & hybrid dynamics | 1. Realâtime Variational Quantum Simulation (VQS) 2. Quantum ImaginaryâTime Evolution (QITE) 3. Variational Quantum Linear Solver (VQLS) for small linear systems 4. Realâtime VQS for Dirac or Schrödinger spinors with hardwareâefficient ansĂ€tze 5. Imaginaryâtime VQS/ QITE for Dirac or Schrödinger groundâstate preparation 6. QAOAâstyle ThermoâFieldâDouble (TFD) preparation on small instances (2Nâqubit purification) 7. Variational Quantum Thermalizer (VQT): freeâenergy minimization for Gibbs states 8. TFDâinitialized VQS for finiteâtemperature correlators/ smallâsystem spectroscopy |
| D. Direct Hamiltonianâsimulation (small grids) | 1. Spectral (Fourier) discretizationâŻ+âŻTrotter for 1âD Schrödinger 2. Quantumâwalkâbased Dirac firstâorder hyperbolic solver (few lattice sites) 3. Quantumâwalk tunneling/ barrier transport (singleâstep quantum walk) |
| E. Simple linearâsystem/ HHL demos | 1. HHL for a 2âŻĂâŻ2 or 4âŻĂâŻ4 Poissonâtype matrix (demonstration only) |
| F. Quantumâaccelerated MonteâŻCarlo (basic) | 1. Lowâdepth amplitudeâestimation variants (maximumâlikelihood/ iterative, no QPE) 2. Quantum jumps/ MonteâCarlo waveâfunction (MCWF) for a single Lindblad trajectory (few qubits) |
| G. Minimal Lindblad simulators | 1. Randomized productâformula simulation of shortâtime GKSL dynamics (â€âŻ5 qubits) 2. Liouvilleâspace vectorization (âŁÏâ©â©) prototypes for small GKSL models (TFDâstyle bilayer circuits) |
| H. Other NISQâready families | 1. Quantum tensorânetwork simulators (MPS/PEPS with shallow circuits) 2. QSP/QSVT for lowâdegree polynomial approximations (e.g., lowâorder Chebyshev filters) 3. Quantum algorithms for fractional Laplacian on very small lattices (Fourierâspace LCU) 4. Stochastic Schrödingerâequation discretizations for a few modes (QSDE prototype) 5. ProductâSpectrum Ansatz (PSA) & ThermalâPureâQuantum (TPQ) typicalâstate baselines |
II.âŻNearâterm/ hybrid (requires modest errorâcorrection, multiâcircuit layouts, or classicalâquantum coâprocessing)
These approaches are still limited on todayâs noisy devices but become practical with modest errorâmitigation, circuit parallelism, or when used as subâroutines inside a classical workflow (e.g. hybrid QMC, domainâdecomposition).
| Category | Techniques |
|---|---|
| A. Multiâcircuit latticeâkinetic methods | 1. Multiâcircuit QLBM for noisy devices (parallel streams) 2. Measurementâbased QLGA for NavierâStokes (classical feedback after each step) |
| B. Linearâdifferentialâequation & Carlemanâlinearization prototypes | 1. LDE oracles (BerryâChildsâKothari) as proofâofâconcept 2. Carleman linearization for lowâorder NavierâStokes regimes (small lifted dimension) |
| C. Quantum finiteâelement/ multigrid (tiny meshes) | 1. QuâFEM/ QâFEM for 2âD Poisson on â€âŻ4âŻĂâŻ4 meshes 2. QFEMâDirac for a 2âD spinor mesh (â€âŻ8 qubits) |
| D. LCU/ qubitization for modest problem sizes | 1. LCU/ qubitization of the Dirac operator on a 2âŻĂâŻ2 lattice 2. VQLS for stationary Schrödinger on â€âŻ8âdimensional basis |
| E. Hamiltonian simulation (intermediate depth) | 1. TrotterâSuzuki product formula for Dirac kineticâŻ+âŻmass on a 3âsite lattice 2. Finiteâdifference Schrödinger Trotter on a 4âsite grid |
| F. Hybrid quantumâaccelerated MonteâŻCarlo | 1. Prototype Quantum Metropolis (singleâspin Ising) 2. Hybrid QMC where the quantum computer supplies trial wavefunctions for AFQMC 3. QAEâbased variance reduction inside Diffusion MonteâŻCarlo 4. Stochastic Diracâequation sampling on a few momentum modes |
| G. Quantum trajectories with modest scaling | 1. AdditiveâŻO(TâŻ+âŻlogâŻ1/Δ) trajectory algorithm for a 2âqubit Lindbladian (research prototype) |
| H. Quantum CarâParrinello Molecular Dynamics (NISQ prototype) | 1. QCPMD for a singleâatom, fewâelectron system (small basis) |
| I. Other nearâterm families | 1. Quantum latticeâgaugeâtheory engines for 1âD U(1) link models (few links) 2. Quantumâaccelerated adaptiveâmeshârefinement on a 2âD grid (error estimate via IAE) 3. Quantumâenhanced realâtime TDDFT for a 2âelectron molecule (VQEâderived KohnâSham potential) 4. Wignerâfunction evolution on a 2âpoint phaseâspace (QFTâbased) 5. Quantumâaccelerated uncertainty quantification for a 1âD diffusion PDE (QAE sampling of input parameters) 6. Finiteâtemperature linearâresponse & spectra using TFD initial states (Kubo/Greenâsâfunction pipelines) |
| J. Variational TFD pipelines (hybrid) |
1. ( 2. TFDâQITE at moderate depth (ÎČâschedules; localityâaware updates) 3. Smallâlattice finiteâT correlators & spectral densities from TFD |
III.âŻFaultâtolerant eligible (requires errorâcorrected hardware, large ancilla registers, deep circuits)
These algorithms deliver asymptotic speedâups or polynomialâtime reductions that become advantageous only when a fullâscale faultâtolerant quantum computer is available. Qiskit provides the lowâlevel building blocks (LinearCombinationOfUnitaries, SelectOracle, PhaseEstimation, QSVT), but highâlevel wrappers are still under development.
| Category | Techniques |
|---|---|
| A. Largeâscale linearâsystem solvers | 1. Fullâscale HHL/ blockâencoding for Poisson matrices of size 2âżâŻĂâŻ2âż 2. Faultâtolerant VQLS for highâdimensional Schrödinger eigenproblems |
| B. Dirac & Schrödinger Hamiltonian simulation (qubitization) | 1. Qubitization of the relativistic kinetic operator for 3âD lattices 2. Qubitization of kineticâŻ+âŻpotential for highâresolution Schrödinger grids 3. Full LCU implementation of the Dirac Hamiltonian (massâŻ+âŻgauge coupling) 4. LCU/ qubitization of Schrödinger kineticâŻ+âŻpotential |
| C. Scattering &âŻSâmatrix algorithms | 1. Greenâsâfunction based crossâsection computation using a quantum resolvent (QPE or QSVT) 2. Dirac scattering (Kleinâparadox) with QSVTâbased resolvent 3. Nonârelativistic LippmannâSchwinger solver via QSVT 4. Finiteâtemperature linearâresponse/ OTOCs from TFD with phaseâestimationâgrade accuracy |
| D. Quantum signalâprocessing/ QSVT frameworks | 1. Highâdegree Chebyshev and polynomial approximations for timeâevolution and matrix inversion (generic PDEs) 2. QSPâbased fractionalâoperator solvers for nonâlocal dynamics |
| E. Quantum latticeâgaugeâtheory (full models) | 1. Digital simulation of 2âD/3âD U(1) and SU(2) gauge fields with plaquette operators (requires many qubits and Tâgate depth) |
| F. Quantum stochastic differential equations & nonâMarkovian open systems | 1. QSDE simulation using Stinespring dilation and phaseâestimation (large ancilla) 2. LCU/ Stinespring dilation of general GKSL generators |
| G. Quantumâaccelerated multigrid & preconditioners | 1. Quantum multigrid Vâcycle as a subâroutine for linearâsystem solvers (requires faultâtolerant VQLS) 2. Quantumâaccelerated sparseâmatrix preconditioners (quantum BiCGSTAB, quantum multigrid) |
| H. Quantumâenhanced adaptiveâmeshârefinement | 1. AMR driven by quantumâestimated error norms (QAE required at each refinement step) |
| I. Highâorder spectralâelement/ hpâFEM | 1. Quantum spectralâelement method with hpârefinement (mesh encoded in qubits, blockâencoded stiffness matrices) |
| J. Quantum tensorânetwork simulation at scale | 1. Largeâscale MPS/PEPS evolution using quantum circuits (requires faultâtolerant resources for bondâdimension growth) |
| K. Quantum MetropolisâHastings for generic distributions | 1. Fullâscale Quantum Metropolis algorithm (detailedâbalance via phase estimation) |
| L. Hybrid quantumâclassical domain decomposition | 1. Schwarzâtype decomposition where each subdomain is solved with a faultâtolerant quantum linearâsolver and the interface is handled classically |
| M. Quantumâenhanced realâtime TDDFT & manyâbody dynamics | 1. Fully faultâtolerant RTâTDDFT where the KohnâSham potential and the electron density are updated via quantum subâroutines (qubitization of the KS Hamiltonian) |
| N. Wignerâfunction/ phaseâspace quantum dynamics | 1. Exact quantumâFourierâtransformâbased evolution of highâdimensional Wigner functions (large QFT registers required) |
| O. Quantum uncertainty quantification for largeâscale PDEs | 1. Propagation of inputâparameter distributions through quantumâaccelerated forward models (QAEâŻ+âŻQSVT) |
| P. Quantumâaccelerated scattering with manyâbody final states | 1. Dirac timeâdependent scattering with multiâparticle production (requires faultâtolerant manyâbody state preparation) |
| Q. Quantumâenhanced LinearâLandauâLifshitzâGilbert (LLG) mapping | 1. Extraction of microscopic LLG coefficients from entanglementâaware quantum simulations (requires full openâsystem simulationâŻ+âŻphase estimation) |
| R. Finiteâtemperature & purifiedâGibbs/TFD preparation (faultâtolerant) |
1. QSVT/ blockâencoding routes to purified Gibbs/TFD ( 2. Coherent Gibbs samplers (detailedâbalance Lindbladians mapped to a parent Hamiltonian with purifiedâGibbs zeroâmode; adiabatic path in ( 3. Largeâscale finiteâT response & OTOCs on TFD/SchwingerâKeldysh contours (QPEâgrade) |
An Example Architecture of What a Fault-Tolerant Heterogenous/ Hybrid Quantum System Could Look Like - by Onri
Heterogeneous Quantum Computer (Architected for Fault-Tolerant Compatibility)
ââ Main QPU: Neutral-Atom (Rydberg/ tweezer)
â ââ Fast parallel CZ gates (~99.5%); long coherence (â12.6 s, hyperfine)
â ââ Reconfigurable layouts; mid-circuit measurement & erasure
â ââ On-chip nanophotonics for coupling/ imaging
ââ Co-Processor: Quantum Photonic IC (QPIC)
â ââ Time-bin/ cluster-state generation; fusion operations
â ââ Waveguide arrays, thin-film LiNbOâ modulators, PNR detectors
â ââ Fiber network to other racks/ fridges
ââ Translator(s): ÎŒw â optical
â ââ Electro-optic (LiNbOâ), opto-mechanical, Rydberg ensembles
â ââ Targets: internal η â„ 0.1-0.5, added noise âČ 1 photon
â ââ With JPA/ JTWPA pre-amps (paramps), pump-noise filtering
ââ Quantum Memory: Superconducting Cat (bosonic)
â ââ Passive bit-flip suppression (noise bias)
â ââ Repetition-cat outer code; bias-preserving gates (SNAP-enabled)
â ââ Logical store/ refresh; interface to ancilla
ââ Ancilla Layer: Transmons (tight to cat memories & readout)
â ââ Microwave-tunable Transmon (all-microwave, fixed-freq)
â â ââ Effective ZZ/ CZ tuning via microwave dressing (MAP/ CR/ MATC-style)
â â ââ Flux-noise immunity; no DC-flux lines; compatible with fixed-freq layouts
â ââ Voltage-tunable Transmon (advanced gatemon)
â ââ Frequency agility via electrostatic gating (semiconductor JJ)
â ââ Syndrome extraction, parity checks, and cavity SNAP orchestration
ââ Classical Control & RAM
ââ Cryo-CMOS SRAM/ FBRAM/ MRAM/ GC-eDRAM near 4-12 K; microcode/ waveform cache
ââ Single-Flux-Quantum Digital (4 K stage; higher-integration families)
â ââ RSFQ (DC-biased; ultrafast legacy baseline; static-power overhead); reference-grade timing/ waveform source or local clocks
â ââ eSFQ/ ERSFQ (DC-biased, zero static power; preferred for scalable SFQ logic & SFQ-DACs/ JAWS)
â ââ RQL (AC-powered; no on-chip static power; multi-phase AC clock/ power; AC/ DC converters as needed)
â âą SFQ-based AWG/ DAC for qubit drive (JAWS); isolate to mitigate quasiparticles; near-deterministic timing
ââ Compiler for biased/ erasure noise and transduction-aware routing
Decision Tree to Determine Which Quantum-Native Solver/ Simulation Techniques Could Run on an Proposed Fault-Tolerant Heterogenous Quantum Computer
Faultâtolerant heterogeneous/hybrid quantum system
ââ Main QPU: NeutralâAtom (Rydberg/ tweezer)
â ââ NISQâready techniques (shallow circuits, few qubits)
â â ââ I.C.1 Diracâtype quantumâwalk/ QCA
â â ââ I.C.2 Schrödingerâtype quantumâwalk/ QCA
â â ââ I.C.3 Simple gaugeâfieldâcoupled quantum walk/QCA (U(1) link)
â â ââ I.A.1 âQuantum-walkâequivalentââ Quantum LatticeâBoltzmann (QLBM)
â â ââ I.B.3 Fullyâquantum LatticeâGas Automata (MHD/NSâready)
â â ââ III.J Variational Quantum Simulation (VQS, realâtime)
â â ââ III.K Quantum ImaginaryâTime Evolution (QITE)
â â ââ III.L Variational Quantum Linear Solver (VQLS, small systems)
â â ââ III.N.1 Realâtime VQS for Dirac spinors
â â ââ III.O.1 Realâtime VQS for Schrödinger spinors
â â ââ IV.P Realâspace electronâdynamics (shortâdepth Trotter)
â â ââ IV.R Quantumâwalk tunnelling/ barrier transport
â â ââ V.P1 Iterative Amplitude Estimation (IAE)
â â ââ VI.R2 Randomised productâformula GKSL simulation (â€âŻ5âŻqubits)
â â
â ââ Nearâterm/ hybrid techniques (moderate errorâcorrection, multiâcircuit)
â â ââ I.A.3 Multiâcircuit QLBM for noisy devices (parallel streams)
â â ââ I.B.1 Measurementâbased QLGA for Navier-Stokes (midâcircuit readout)
â â ââ II.E LinearâDifferentialâEquation (LDE) oracles (BerryâChildsâKothari)
â â ââ II.F Carlemanâlinearized ODE/PDE prototypes (lowâorder Navier-Stokes)
â â ââ II.G Quantum FiniteâElement/ QâFEM on tiny meshes (â€âŻ4Ă4)
â â ââ II.H.1 Quantum walkâbased Dirac firstâorder hyperbolic solver (few sites)
â â ââ II.I.1 Spectral Schrödinger solver (small Fourier grid)
â â ââ III.M Quantum CarâParrinello MD (prototype, few electrons)
â â ââ IV.S.1 TrotterâSuzuki Dirac kineticâŻ+âŻmass (3âsite lattice)
â â ââ IV.T.1 Finiteâdifference Schrödinger Trotter (4âsite grid)
â â ââ V.P2 Prototype Quantum Metropolis sampler (singleâspin Ising)
â â ââ V.P3 Hybrid QMC - QCâgenerated trial wavefunctions for AFQMC
â â ââ VI.R3 AdditiveâŻO(TâŻ+âŻlogâŻ1/Δ) quantumâtrajectory algorithm (research demo)
â â
â ââ Faultâtolerantâeligible techniques (require logical qubits, biasâpreserving gates)
â ââ II.D Fullâscale HHL/ blockâencoding linearâsystem solver
â ââ II.E Largeâscale LDE oracle (highâprecision phase estimation)
â ââ II.F Complete Carlemanâlinearization for nonlinear PDEs
â ââ II.G Full QuâFEM + quantum multigrid preconditioner
â ââ IV.S.2 Qubitization of Dirac kinetic operator (3âD lattice)
â ââ IV.T.2 Qubitization of Schrödinger kineticâŻ+âŻpotential
â ââ IV.Q Scattering & Sâmatrix via Greenâsâfunction resolvent (QSVT/QSP)
â ââ IV.S.3 Highâorder Dirac productâformula (ForestâRuth, Suzukiâ23)
â ââ IV.T.3 Interactionâpicture Schrödinger simulation (timeâdependent V)
â ââ V.S.1 Stochastic Diracâequation (QSDE) MonteâŻCarlo
â ââ V.R.1 Diffusion MonteâŻCarlo with QCâenhanced trial wavefunctions
â ââ VI.R1 LCU/ Stinespringâdilation implementation of GKSL Lindbladians
â ââ VI.T1âT3 Lindblad â LL/ LLG mappings (microscopic coefficient extraction)
â ââ VII.A.* All Diracâwalk families (A1-A4)
â ââ VII.B.* Dirac QLGA kernels (B1-B3)
â ââ VII.C.* Dirac Hamiltonian simulation (C1-C4)
â ââ VII.D.* Variational & imaginaryâtime Dirac solvers (D1-D3)
â ââ VII.E.* Carlemanâlinearized Dirac nonlinear models (E1-E3)
â ââ VII.F.* Dirac FEM/ multigrid (F1-F2)
â ââ VII.G.* Dirac scattering & Sâmatrix (G1-G3)
â ââ VII.H.* Hybrid classicalâquantum Dirac workflows (H1-H2)
â ââ VIII.A.* Schrödinger Hamiltonian simulation (A1-A4)
â ââ VIII.B.* Schrödingerâspecific QPDE solvers (B1-B4)
â ââ VIII.C.* Variational Schrödinger techniques (C1-C4)
â ââ VIII.D.* Quantumâwalk implementations of Schrödinger dynamics (D1-D3)
â ââ VIII.E.* Quantum Cellular Automata for Schrödinger (E1-E2)
â ââ VIII.F.* Schrödinger Quantum MonteâŻCarlo (F1-F4)
â ââ VIII.G.* Manyâbody Schrödinger solvers (G1-G4)
â ââ VIII.H.* Hybrid classicalâquantum Schrödinger workflows (H1-H3)
â ââ VIII.I.* Scattering & Sâmatrix for nonârelativistic particles (I1-I3)
â ââ VIII.J.* Schrödinger FEM/ multigrid (J1-J3)
â
ââ CoâProcessor: Quantum Photonic IC (QPIC)
â ââ NISQâready photonic techniques
â â ââ I.C.1 Diracâtype quantum walk in timeâbin encoding
â â ââ I.C.2 Schrödingerâtype continuousâtime quantum walk
â â ââ I.B.1 Measurementâbased QLGA (clusterâstate generation)
â â ââ V.P1 Iterative Amplitude Estimation with singleâphoton detectors
â â
â ââ Nearâterm/ hybrid photonic techniques
â â ââ V.P2 Quantum Metropolis sampler realised with linearâoptical interferometers
â â ââ V.P3 Hybrid QMC - photonic circuit produces trial wavefunctions for AFQMC
â â ââ II.E Prototype photonic LDE oracle (clusterâstate linear ODE)
â â
â ââ Faultâtolerantâeligible photonic techniques
â ââ VI.R1 LCU/ Stinespringâdilation of GKSL Lindbladians using bosonic cat encodings
â ââ VIII.F.1 Bosonic Diffusion MonteâŻCarlo (photonânumberâencoded walkers)
â
ââ Translator(s) ÎŒw â optical
â ââ Enables crossâplatform operations:
â ââ Swap neutralâatomâprepared states into the photonic QPIC for measurementâbased QLGA
â ââ Transfer photonic trial wavefunctions into the neutralâatom QPU for VQS/ QITE loops
â ââ Carry Lindblad jump outcomes between the two layers for hybrid trajectory simulations
â
ââ Quantum Memory: Superconducting Cat (bosonic)
â ââ Nearâterm/ hybrid use
â â ââ Store intermediate probability distributions for multiâcircuit QLBM (I.A.3) between Trotter steps
â ââ Faultâtolerantâeligible use
â ââ Logical storage for largeâscale HHL/VQLS registers (II.D, III.L)
â ââ Buffer for Dirac/ Schrödinger qubitization registers (IV.S.2, IV.T.2)
â ââ Hold errorâestimate registers for quantumâdriven AMR (VII.F.2, VIII.J.3)
â ââ Preserve manyâbody wavefunctions for quantumâdynamical meanâfield theory (VIII.G.2)
â
ââ Ancilla Layer: Transmons (biasâpreserving, syndrome extraction)
â ââ Provide faultâtolerant CZ/ZZ and SNAPâenabled gates used by all LCU/ qubitization kernels in the FTâeligible branch
â
ââ Classical Control & RAM
ââ CryogenicâCMOS/ SFQ waveform engines compile biasâaware, erasureâaware circuits for every technique
ââ Run the outer optimization loops for VQS/ QITE/ VQLS (III.J-III.O)
ââ Dispatch hybrid QMC/ Metropolis proposals to the photonic coâprocessor
ââ Coordinate domainâdecomposition (VIII.H, VII.H) and adaptiveâmeshârefinement decisions (VII.F.2, VIII.J.3)
- d = 7 â ~98 physical/logical
- d = 13 â ~338 physical/logical
- Occupancy mapping: for 2D D2Q5, 5MÂČ qubits for an MĂM lattice (one per discrete velocity population)
Description: Estimated qubit counts for methods that can be run on current NISQ hardware without error correction.
| Method | Qubit estimate (todayâs NISQ) | How the count was derived | Representative instance |
|---|---|---|---|
| Quantum walks | 6â14âŻqubits typical; formula â âlogââŻNââŻ+âŻ2 | Position registerâŻ+âŻcoinâŻ+âŻone small ancilla | NâŻ=âŻ1,024 nodes â 10âŻ(pos)âŻ+âŻ1âŻ(coin)âŻ+âŻ1âŻ(anc)âŻ=âŻ12 |
| QLBM demos â occupancy encoding | 5âŻMÂČâŻqubits (scales with lattice size) | D2Q5 mapping: one qubit per discreteâvelocity population | MâŻ=âŻ8 â 5âŻÂ·âŻ64âŻ=âŻ320 |
| QLBM demos â amplitudeâencoded | ~10âŻqubits (â9âŻdataâŻ+âŻ1âŻancilla) | Amplitude/stateâencoding keeps width constant | Demonstrations use 9âŻ+âŻ1âŻqubits |
| VQS/ QITE | 4â20âŻqubits | VQE chemistry demos: Hâ (4âŻq), LiH (12âŻq); QITE demos up to ~20âŻq | Hâ minimal basis (4âŻq), LiH frozenâcore (12âŻq) |
| Tiny HHL demos | 4â8âŻqubits | Small 2Ă2â4Ă4 linear systems using QPEâŻ+âŻancillas | Early NMR/photonic/IBMâstyle proofs of concept |
| Basic amplitude estimation | 0â1âŻancilla beyond problem registers | Lowâdepth variants avoid large phaseâestimation registers | MLâAE and IQAE use 0â1 extra qubit |
| Minimal Lindblad simulators | 2â4âŻqubits for one system qubitâŻ+âŻenvironment ancilla(s) | Stinespring/Kraus dilation for a singleâqubit channel | Amplitude damping on one qubit â 2 total; more channels add ancillas |
Description: Logicalâqubit estimates for methods that employ modest error correction (e.g., surfaceâcode distanceâŻdâŻ=âŻ7 orâŻ13) and may involve multiple circuit stages.
| Method | Algorithmic logical qubits (typical) | Physical qubits @âŻdâŻ=âŻ7 | Physical qubits @âŻdâŻ=âŻ13 | Reasoning |
|---|---|---|---|---|
| Multiâcircuit QLBM (amplitudeâencoded, with midâcircuit measure/reset) | ~10â20âŻlogical | ~980â1,960 | ~3,380â6,760 | Uses ~9 dataâŻ+âŻ1 ancilla kernel; multiâcircuit orchestration reuses the small kernel |
| Linearâdifferentialâequation (LDE) oracles in a QLSS/QSVT pipeline | nâŻ+âŻ3â10 (nâŻ=âŻlogââŻgridâŻDOFs) â e.g. ~32â64âŻlogical | ~3,100â6,300 | ~10,800â21,600 | QLSS uses n algorithmic qubits plus ancillas for blockâencoding and QSP |
| Tiny QâFEM prototypes (hybrid FEMâŻ+âŻVQLS) | ~8â24âŻlogical | ~784â2,352 | ~2,704â8,112 | Nearâterm VQLS FEM and hybrid CFD/FEM demos show fewâtoâfewâdozenâqubit runs |
| Prototype QMetropolis/ QMS | nâŻ+âŻrâŻ+âŻ2â5 â ~24â64âŻlogical | ~2,400â6,300 | ~8,100â21,600 | System register n, râbit energy precision, plus small ancillas for acceptâreject |
| Quantumâaccelerated Monte Carlo (QAEâbased risk/option demos, shallow variants) | 10â40âŻlogical | ~980â3,920 | ~3,380â13,520 | Demos typically use 5â10 qubits for distributions, a payoff register, and 0â1 ancilla |
| Photonic coâprocessor variants | Not qubitâencoded (modes/photons) | N/A | N/A | Photonic sampling/counting uses modes/photons rather than qubits; surfaceâcode overhead not applicable |
Description: Logicalâqubit counts for fully faultâtolerant algorithms, together with physicalâqubit totals for surfaceâcode distancesâŻdâŻ=âŻ7 andâŻdâŻ=âŻ13.
| Method | Representative problem & logical qubits | Physical @âŻdâŻ=âŻ7 | Physical @âŻdâŻ=âŻ13 | Notes |
|---|---|---|---|---|
| Fullâscale HHL/ blockâencoding linear solver | Sparse NâŻ=âŻ2ÂČâ° (nâŻ=âŻ20) with QSVT/QLSS â ~30â60âŻlogical (20âŻdataâŻ+âŻ1â3âŻQSP ancillasâŻ+âŻsmall oracles) | ~2,900â5,900 | ~10,100â20,300 | Lowâancilla blockâencoding/QSP; depth/Tâcount dominate cost |
| Qubitized Dirac/ Schrödinger Hamiltonians | 3D grid 256Âł â nâŻ=âŻ24; qubitization ancillas â ~26â36âŻlogical | ~2,500â3,500 | ~8,800â12,200 | Qubitization uses â€2 ancillas; gridâbased demos confirm n in the 20â30 range |
| QSVTâbased PDE solvers | Mixed FEM/PDE with QSP precision â ~40â80âŻlogical | ~3,900â7,800 | ~13,500â27,000 | QSVT angles/LCU ancillas add O(1âlogâŻL) |
| Quantumâenhanced AMR | AMR errorâestimator loopsâŻ+âŻQLSS core â ~32â64âŻlogical | ~3,100â6,300 | ~10,800â21,600 | Quantum errorâestimators via blockâencoding; toy VQLS AMR evaluators use 2â5âŻqubits (without EC) |
| Largeâscale tensorânetwork simulation (QTN on QC) | QTN/MPS with bond dimension ÏâŻ=âŻ64 â ~6â12âŻlogical (logâÏâŻ+âŻancillas) | ~590â1,180 | ~2,030â4,060 | Width independent of system size; depth and sampling control accuracy |
| Quantumâaccelerated Monte Carlo (finance, faultâtolerant) | Endâtoâend estimates: ~4.7kâ8kâŻlogical; Tâcount â10âžâ10âč | ~4.6âŻĂâŻ10â”â7.8âŻĂâŻ10â” | ~1.6âŻĂâŻ10â¶â2.7âŻĂâŻ10â¶ | QSPâbased payoff loading reduces logical width to ~4.7k; factories and clock rate dominate schedule |
- Wang, B., Meng, Z., Zhao, Y. and Yang, Y. (2025) Quantum lattice Boltzmann method for simulating nonlinear fluid dynamics. [Preprint]. arXiv:2502.16568. Available at: https://arxiv.org/abs/2502.16568.
- Georgescu, C.A., Schalkers, M.A. and Möller, M. (2024) qlbm â A Quantum Lattice Boltzmann Software Framework. [Preprint]. arXiv:2411.19439. Available at: https://arxiv.org/abs/2411.19439.
- Meyer, D.A. (1996) 'From quantum cellular automata to quantum lattice gases', Journal of Statistical Physics, 85, pp. 551â574. Available at: https://doi.org/10.1007/BF02199356.
- Strauch, F.W. (2006) 'Relativistic quantum walks', Physical Review A, 73(5), 054302. Available at: https://doi.org/10.1103/PhysRevA.73.054302.
- Arnault, P., Di Molfetta, G., Brachet, M. and Debbasch, F. (2016) 'Quantum walks and non-Abelian discrete gauge theory', Physical Review A, 94(1), 012335. Available at: https://doi.org/10.1103/PhysRevA.94.012335.
- MĂĄrquez-MartĂn, I., Arnault, P., Di Molfetta, G. and PĂ©rez, A. (2018) 'Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks', Physical Review A, 98(3), 032333. Available at: https://doi.org/10.1103/PhysRevA.98.032333.
- Harrow, A.W., Hassidim, A. and Lloyd, S. (2009) 'Quantum algorithm for linear systems of equations', Physical Review Letters, 103(15), 150502. Available at: https://doi.org/10.1103/PhysRevLett.103.150502.
- Berry, D.W., Childs, A.M., Ostrander, A. and Wang, G. (2017) 'Quantum algorithm for linear differential equations with exponentially improved dependence on precision', Communications in Mathematical Physics, 356, pp. 1057â1081. Available at: https://doi.org/10.1007/s00220-017-3002-y.
- Wu, H.-C., Wang, J. and Li, X. (2024) Quantum algorithms for non-linear dynamics: Revisiting Carleman linearization with no dissipative conditions. [Preprint]. arXiv:2405.12714. Available at: https://arxiv.org/abs/2405.12714.
- Low, G.H. and Chuang, I.L. (2017) 'Optimal Hamiltonian simulation by quantum signal processing', Physical Review Letters, 118(1), 010501. Available at: https://doi.org/10.1103/PhysRevLett.118.010501.
- Childs, A.M., Kothari, R. and Somma, R.D. (2017) 'Quantum algorithm for linear systems of equations with exponentially improved dependence on precision', SIAM Journal on Computing, 46(6), pp. 1920â1950. Available at: https://doi.org/10.1137/16M1087072.
- Brassard, G., HĂžyer, P., Mosca, M. and Tapp, A. (2002) 'Quantum amplitude amplification and estimation', Quantum Information & Computation, 2(1), pp. 53â74. Available at: https://arxiv.org/abs/quant-ph/0005055.
- Suzuki, S., et al. (2021) 'Real- and imaginary-time evolution with compressed quantum circuits', PRX Quantum, 2(1), 010342. Available at: https://doi.org/10.1103/PRXQuantum.2.010342.
- McArdle, S., et al. (2020) 'Variational quantum simulation of general processes', Physical Review Letters, 125(1), 010501. Available at: https://doi.org/10.1103/PhysRevLett.125.010501.
- Kuroiwa, K., Ohkuma, T., Sato, H. and Imai, R. (2022) Quantum Car-Parrinello molecular dynamics: A cost-efficient molecular simulation method on near-term quantum computers. [Preprint]. arXiv:2212.11921. Available at: https://arxiv.org/abs/2212.11921.
- Arrighi, P., Forets, M. and Nesme, V. (2014) 'The Dirac equation as a quantum walk: higher dimensions, observational convergence', Journal of Physics A: Mathematical and Theoretical, 47(46), 465302. Available at: https://doi.org/10.1088/1751-8113/47/46/465302.
- Huerta Alderete, C., et al. (2020) 'Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer', Nature Communications, 11, 3720. Available at: https://doi.org/10.1038/s41467-020-17519-4.
- Ding, Z., Li, X. and Lin, L. (2024) 'Simulating open quantum systems using Hamiltonian simulations', PRX Quantum, 5(2), 020332. Available at: https://doi.org/10.1103/PRXQuantum.5.020332.
- Cleve, R. and Wang, C. (2016) Efficient quantum algorithms for simulating Lindblad evolution. [Preprint]. arXiv:1612.09512. Available at: https://arxiv.org/abs/1612.09512.
- Yung, M.-H., Whitfield, J.D., Tempel, D.G., Aspuru-Guzik, A. and Lloyd, S. (2014) 'Computational complexity of time-dependent density functional theory', New Journal of Physics, 16(8), 083035. Available at: https://doi.org/10.1088/1367-2630/16/8/083035.
- Cavaglia, A., et al. (2020) 'An algorithm for quantum computation of particle decays and cross-sections', Physical Review D, 102(9), 094505. Available at: https://doi.org/10.1103/PhysRevD.102.094505.
- Rong, X., et al. (2024) Quantum multigrid algorithm for finite-element problems. [Preprint]. arXiv:2404.07466. Available at: https://arxiv.org/abs/2404.07466.
- Alkadri, A.M., Kharazi, T.D. and Whaley, K.B. (2025) A quantum algorithm for the finite-element method. [Preprint]. arXiv:2510.18150. Available at: https://arxiv.org/abs/2510.18150.
- Shaviner, G. (2025) Quantum singular-value transformation for solving linear systems of differential equations. [Preprint]. arXiv:2507.09686. Available at: https://arxiv.org/abs/2507.09686.
- Grinko, D., Gacon, J., Zoufal, C. and Woerner, S. (2021) 'Iterative quantum amplitude estimation', npj Quantum Information, 7, 52. Available at: https://doi.org/10.1038/s41534-021-00379-1.
- Zhou, Y., et al. (2025) Adaptive mesh-refinement quantum algorithm for Maxwellâs equations. [Preprint]. arXiv:2504.01646. Available at: https://arxiv.org/abs/2504.01646.
- Yu, Y. (2025) Schrödingerization based quantum algorithms for the fractional Poisson equation. [Preprint]. arXiv:2505.01602. Available at: https://arxiv.org/abs/2505.01602.
- Ayral, T. (2025) Dynamical mean-field theory with quantum computing. [Preprint]. arXiv:2508.00118. Available at: https://arxiv.org/abs/2508.00118.
- Georgescu, C.A. (2024) Quantum Algorithms for the Lattice Boltzmann Method: Encoding and Evolution. PhD thesis, TU Delft. Available at: https://resolver.tudelft.nl/a7b20729-46b7-42d1-aaf7-c001fc93efd9.
- In. Klco, N., Savage, M.J. and Stryker, J.R. (2020) 'SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers', Physical Review D, 101(7), 074512. Available at: https://doi.org/10.1103/PhysRevD.101.074512.
- GarcĂa-Molina, P., RodrĂguez-Mediavilla, J. and GarcĂa-Ripoll, J.J. (2022) 'Quantum Fourier analysis for multivariate functions and applications to a class of Schrödinger-type partial differential equations', Physical Review A, 105(1), 012433. Available at: https://doi.org/10.1103/PhysRevA.105.012433.
- Kyriienko, O. (2023) Quantum Chebyshev transform: mapping, embedding, learning and sampling distributions. [Preprint]. arXiv:2306.17026. Available at: https://arxiv.org/abs/2306.17026.
- Zhao, T., et al. (2022) Quantum-inspired variational algorithms for partial differential equations: application to financial derivative pricing. [Preprint]. arXiv:2207.10838. Available at: https://arxiv.org/abs/2207.10838.
- Zhou, Y., et al. (2024) Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters. [Preprint]. arXiv:2407.05019. Available at: https://arxiv.org/abs/2407.05019.
- Foulkes, W.M.C., Mitas, L., Needs, R.J. and Rajagopal, G. (2001) 'Quantum Monte Carlo simulations of solids', Reviews of Modern Physics, 73(1), pp. 33â83. Available at: https://doi.org/10.1103/RevModPhys.73.33.
- Stenger, M., et al. (2022) Quantum algorithms for uncertainty quantification: application to partial differential equations. [Preprint]. arXiv:2209.11220. Available at: https://arxiv.org/abs/2209.11220.
- Bianucci, P., Miquel, C., Paz, J.P. and Saraceno, M. (2001) Discrete Wigner functions and the phase-space representation of quantum computers. [Preprint]. arXiv:quant-ph/0106091. Available at: https://arxiv.org/abs/quant-ph/0106091.
- Kitaev, A.Y. (1995) Quantum measurements and the Abelian stabilizer problem. [Preprint]. arXiv:quant-ph/9511026. Available at: https://arxiv.org/abs/quant-ph/9511026.
- Arute, F., et al. (2019) 'Quantum supremacy using a programmable superconducting processor', Nature, 574, pp. 505â510. Available at: https://doi.org/10.1038/s41586-019-1666-5.
- Lloyd, S. (1996) 'Universal quantum simulators', Science, 273(5278), pp. 1073â1078. Available at: https://doi.org/10.1126/science.273.5278.1073.
- Bausch, J., et al. (2023) Quantum algorithms for fractional-order operators. [Preprint]. arXiv:2303.06703. Available at: https://arxiv.org/abs/2303.06703.
- Brown, K.R., et al. (2021) 'Quantum algorithms for PDEs: a review', Frontiers in Physics, 9, 667392. Available at: https://doi.org/10.3389/fphy.2021.667392.
- Barends, R., et al. (2014) 'Superconducting quantum circuits at the surface code threshold for fault tolerance', Nature, 508, pp. 500â503. Available at: https://doi.org/10.1038/nature13171.
- Rotentg, M., et al. (2022) 'Quantum-accelerated stochastic differential equations', Quantum, 6, 805. Available at: https://doi.org/10.22331/q-2022-06-09-805.
- Gottesman, D. (1998) The Heisenberg representation of quantum computers. [Preprint]. arXiv:quant-ph/9807006. Available at: httpsfs://arxiv.org/abs/quant-ph/9807006.
- Babbush, R., et al. (2018) 'Low-depth quantum simulation of materials', Physical Review X, 8(1), 011044. Available at: https://doi.org/10.1103/PhysRevX.8.011044.
- Syamlal, M., Copen, C., Takahashi, M. and Hall, B. (2024) Computational Fluid Dynamics on Quantum Computers. [Preprint]. arXiv:2406.18749. Available at: https://arxiv.org/abs/2406.18749.
- Penuel, J., et al. (2024) Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers. [Preprint]. arXiv:2406.06323. Available at: https://arxiv.org/abs/2406.06323. 4s9. Li, J., et al. (2025) Multi-set variational quantum dynamics algorithm for simulating nonadiabatic dynamics on quantum computers. [Preprint]. arXiv:2503.07388. Available at: https://arxiv.org/abs/2503.07388.
- Duriez, A., et al. (2025) Computing band gaps of periodic materials via sample-based quantum diagonalization. [Preprint]. arXiv:2503.10901. Available at: https://arxiv.org/abs/2503.10901.
- Arora, A., Ward, B.M. and Oskay, C. (2s024) An implementation of the finite element method in hybrid classical/quantum computers. [Preprint]. arXiv:2411.09038. Available at: https://arxiv.org/abs/2411.09038.
- Ghisoni, F., Scala, F., Bajoni, D. and Gerace, D. (2024) Shadow quantum linear solver: A resource-efficient quantum algorithm for linear systems of equations. [Preprint]. arXiv:2409.08929. Available at: https://arxiv.org/abs/2409.08929.
- Kahanamoku-Meyer, G.D. (2023) Exploring the Limits of Classical Simulation: From Computational Many-Body Dynamics to Quantum Advantage. PhD thesis, University of California, Berkeley. Available at: https://gregkm.me/files/Kahanamoku-Meyer_dissertation.pdf.
- Beverland, M.E. et al. (2022) Assessing requirements to scale to practical quantum advantage. [Preprint]. arXiv:2211.07629 Available at: https://doi.org/10.48550/arXiv.2211.07629.