Skip to content

deeper_gcn #94

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jun 24, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions examples/deeper_gcn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# DeeperGCN: All You Need to Train Deeper GCNs

see more information in https://arxiv.org/pdf/2006.07739.pdf


### Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the [paper](https://arxiv.org/abs/1609.02907).

### Dependencies

- paddlepaddle>=1.6
- pgl

### Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

| Dataset | Accuracy |
| --- | --- |
| Cora | ~77% |

### How to run

For examples, use gpu to train gat on cora dataset.
```
python train.py --dataset cora --use_cuda
```

#### Hyperparameters

- dataset: The citation dataset "cora", "citeseer", "pubmed".
- use_cuda: Use gpu if assign use_cuda.
89 changes: 89 additions & 0 deletions examples/deeper_gcn/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import pgl
import paddle.fluid as fluid

def DeeperGCN(gw, feature, num_layers,
hidden_size, num_tasks, name, dropout_prob):
"""Implementation of DeeperGCN, see the paper
"DeeperGCN: All You Need to Train Deeper GCNs" in
https://arxiv.org/pdf/2006.07739.pdf

Args:
gw: Graph wrapper object

feature: A tensor with shape (num_nodes, feature_size)

num_layers: num of layers in DeeperGCN

hidden_size: hidden_size in DeeperGCN

num_tasks: final prediction

name: deeper gcn layer names

dropout_prob: dropout prob in DeeperGCN

Return:
A tensor with shape (num_nodes, hidden_size)
"""

beta = "dynamic"
feature = fluid.layers.fc(feature,
hidden_size,
bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_weight'))

output = pgl.layers.gen_conv(gw, feature, name=name+"_gen_conv_0", beta=beta)

for layer in range(num_layers):
# LN/BN->ReLU->GraphConv->Res
old_output = output
# 1. Layer Norm
output = fluid.layers.layer_norm(
output,
begin_norm_axis=1,
param_attr=fluid.ParamAttr(
name="norm_scale_%s_%d" % (name, layer),
initializer=fluid.initializer.Constant(1.0)),
bias_attr=fluid.ParamAttr(
name="norm_bias_%s_%d" % (name, layer),
initializer=fluid.initializer.Constant(0.0)))

# 2. ReLU
output = fluid.layers.relu(output)

#3. dropout
output = fluid.layers.dropout(output,
dropout_prob=dropout_prob,
dropout_implementation="upscale_in_train")

#4 gen_conv
output = pgl.layers.gen_conv(gw, output,
name=name+"_gen_conv_%d"%layer, beta=beta)

#5 res
output = output + old_output

# final layer: LN + relu + droput
output = fluid.layers.layer_norm(
output,
begin_norm_axis=1,
param_attr=fluid.ParamAttr(
name="norm_scale_%s_%d" % (name, num_layers),
initializer=fluid.initializer.Constant(1.0)),
bias_attr=fluid.ParamAttr(
name="norm_bias_%s_%d" % (name, num_layers),
initializer=fluid.initializer.Constant(0.0)))
output = fluid.layers.relu(output)
output = fluid.layers.dropout(output,
dropout_prob=dropout_prob,
dropout_implementation="upscale_in_train")

# final prediction
output = fluid.layers.fc(output,
num_tasks,
bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_final_weight'))

return output


155 changes: 155 additions & 0 deletions examples/deeper_gcn/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#-*- coding: utf-8 -*-
import pgl
from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import numpy as np
import time
import argparse
from pgl.utils.log_writer import LogWriter # vdl
from model import DeeperGCN

def load(name):
if name == 'cora':
dataset = data_loader.CoraDataset()
elif name == "pubmed":
dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
elif name == "citeseer":
dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
else:
raise ValueError(name + " dataset doesn't exists")
return dataset


def main(args):
# vdl
writer = LogWriter("checkpoints/train_history")

dataset = load(args.dataset)
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
train_program = fluid.Program()
startup_program = fluid.Program()
test_program = fluid.Program()
hidden_size = 64
num_layers = 7

with fluid.program_guard(train_program, startup_program):
gw = pgl.graph_wrapper.GraphWrapper(
name="graph",
node_feat=dataset.graph.node_feat_info())

output = DeeperGCN(gw,
gw.node_feat["words"],
num_layers,
hidden_size,
dataset.num_classes,
"deepercnn",
0.1)

node_index = fluid.layers.data(
"node_index",
shape=[None, 1],
dtype="int64",
append_batch_size=False)
node_label = fluid.layers.data(
"node_label",
shape=[None, 1],
dtype="int64",
append_batch_size=False)

pred = fluid.layers.gather(output, node_index)
loss, pred = fluid.layers.softmax_with_cross_entropy(
logits=pred, label=node_label, return_softmax=True)
acc = fluid.layers.accuracy(input=pred, label=node_label, k=1)
loss = fluid.layers.mean(loss)

test_program = train_program.clone(for_test=True)
with fluid.program_guard(train_program, startup_program):
adam = fluid.optimizer.Adam(
regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0005),
learning_rate=0.005)
adam.minimize(loss)

exe = fluid.Executor(place)
exe.run(startup_program)

feed_dict = gw.to_feed(dataset.graph)

train_index = dataset.train_index
train_label = np.expand_dims(dataset.y[train_index], -1)
train_index = np.expand_dims(train_index, -1)

val_index = dataset.val_index
val_label = np.expand_dims(dataset.y[val_index], -1)
val_index = np.expand_dims(val_index, -1)

test_index = dataset.test_index
test_label = np.expand_dims(dataset.y[test_index], -1)
test_index = np.expand_dims(test_index, -1)

# get beta param
beta_param_list = []
for param in fluid.io.get_program_parameter(train_program):
if param.name.endswith("_beta"):
beta_param_list.append(param)

dur = []
for epoch in range(200):
if epoch >= 3:
t0 = time.time()
feed_dict["node_index"] = np.array(train_index, dtype="int64")
feed_dict["node_label"] = np.array(train_label, dtype="int64")
train_loss, train_acc = exe.run(train_program,
feed=feed_dict,
fetch_list=[loss, acc],
return_numpy=True)
for param in beta_param_list:
beta = np.array(fluid.global_scope().find_var(param.name).get_tensor())
writer.add_scalar("beta/"+param.name, beta, epoch)

if epoch >= 3:
time_per_epoch = 1.0 * (time.time() - t0)
dur.append(time_per_epoch)

feed_dict["node_index"] = np.array(val_index, dtype="int64")
feed_dict["node_label"] = np.array(val_label, dtype="int64")
val_loss, val_acc = exe.run(test_program,
feed=feed_dict,
fetch_list=[loss, acc],
return_numpy=True)

log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(dur) +
"Train Loss: %f " % train_loss + "Train Acc: %f " % train_acc
+ "Val Loss: %f " % val_loss + "Val Acc: %f " % val_acc)

feed_dict["node_index"] = np.array(test_index, dtype="int64")
feed_dict["node_label"] = np.array(test_label, dtype="int64")
test_loss, test_acc = exe.run(test_program,
feed=feed_dict,
fetch_list=[loss, acc],
return_numpy=True)
log.info("Accuracy: %f" % test_acc)


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DeeperGCN')
parser.add_argument(
"--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
args = parser.parse_args()
log.info(args)
main(args)
1 change: 1 addition & 0 deletions pgl/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,3 +21,4 @@
from pgl import heter_graph
from pgl import heter_graph_wrapper
from pgl import contrib
from pgl import message_passing
56 changes: 54 additions & 2 deletions pgl/layers/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,10 @@
graph neural networks.
"""
import paddle.fluid as fluid
from pgl import graph_wrapper
from pgl.utils import paddle_helper
from pgl import message_passing

__all__ = ['gcn', 'gat', 'gin', 'gaan']
__all__ = ['gcn', 'gat', 'gin', 'gaan', 'gen_conv']


def gcn(gw, feature, hidden_size, activation, name, norm=None):
Expand Down Expand Up @@ -352,3 +352,55 @@ def recv_func(message):
output = fluid.layers.dropout(output, dropout_prob=0.1)

return output


def gen_conv(gw,
feature,
name,
beta=None):
"""Implementation of GENeralized Graph Convolution (GENConv), see the paper
"DeeperGCN: All You Need to Train Deeper GCNs" in
https://arxiv.org/pdf/2006.07739.pdf

Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

feature: A tensor with shape (num_nodes, feature_size).

beta: [0, +infinity] or "dynamic" or None

name: deeper gcn layer names.

Return:
A tensor with shape (num_nodes, feature_size)
"""

if beta == "dynamic":
beta = fluid.layers.create_parameter(
shape=[1],
dtype='float32',
default_initializer=
fluid.initializer.ConstantInitializer(value=1.0),
name=name + '_beta')

# message passing
msg = gw.send(message_passing.copy_send, nfeat_list=[("h", feature)])
output = gw.recv(msg, message_passing.softmax_agg(beta))

# msg norm
output = message_passing.msg_norm(feature, output, name)
output = feature + output

output = fluid.layers.fc(output,
feature.shape[-1],
bias_attr=False,
act="relu",
param_attr=fluid.ParamAttr(name=name + '_weight1'))

output = fluid.layers.fc(output,
feature.shape[-1],
bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_weight2'))

return output

Loading