Skip to content

concat support negative axis #18045

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 13, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions paddle/fluid/operators/concat_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,10 @@ class ConcatOp : public framework::OperatorWithKernel {
"Output(Out) of ConcatOp should not be null.");

auto ins = ctx->GetInputsDim("X");
size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
size_t axis =
ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
static_cast<int64_t>(ins[0].size()));

const size_t n = ins.size();

PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
Expand Down Expand Up @@ -115,7 +118,10 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) Indicates if MKL-DNN kernel will be used")
.SetDefault(false);
AddAttr<int>("axis",
"The axis along which the input tensors will be concatenated.")
"The axis along which the input tensors will be concatenated."
"The axis could also be negative numbers. Negative axis is "
"interpreted as counting from the end of the rank."
"i.e., axis + rank(X) th dimension.")
.SetDefault(0);
AddAttr<bool>("use_quantizer",
"(bool, default false) "
Expand Down
16 changes: 13 additions & 3 deletions paddle/fluid/operators/concat_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -23,13 +23,22 @@ limitations under the License. */
namespace paddle {
namespace operators {

static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
if (axis < 0) {
axis = axis + rank;
}
return axis > 0 ? axis : 0;
}

template <typename DeviceContext, typename T>
class ConcatKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
PADDLE_ENFORCE(ins[0], "The input should not be null.");
auto axis = ComputeAxis(static_cast<int64_t>(ctx.Attr<int>("axis")),
static_cast<int64_t>(ins[0]->dims().size()));
auto place = ctx.GetPlace();
out->mutable_data<T>(place);

Expand Down Expand Up @@ -83,8 +92,9 @@ class ConcatGradKernel : public framework::OpKernel<T> {
}
}
}

int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
PADDLE_ENFORCE(ins[0], "The input should not be null.");
auto axis = ComputeAxis(static_cast<int64_t>(ctx.Attr<int>("axis")),
static_cast<int64_t>(ins[0]->dims().size()));

// get output tensor that the name is not kEmptyVarName
std::vector<framework::Tensor*> outputs;
Expand Down
16 changes: 15 additions & 1 deletion python/paddle/fluid/tests/unittests/test_concat_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,15 @@ def setUp(self):
self.init_test_data()
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
self.attrs = {'axis': self.axis}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis

self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.axis)
(self.x0, self.x1, self.x2), axis=self.actual_axis)
}

def test_check_output(self):
Expand Down Expand Up @@ -75,5 +81,13 @@ def test_check_grad(self):
pass


class TestConcatOp5(TestConcatOp):
def init_test_data(self):
self.x0 = np.random.random((2, 1, 4, 5)).astype('float32')
self.x1 = np.random.random((2, 2, 4, 5)).astype('float32')
self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
self.axis = -3


if __name__ == '__main__':
unittest.main()