Skip to content

[XPU] support fp16 for group_norm_grad #71569

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion paddle/phi/backends/xpu/xpu3_op_list.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1668,7 +1668,8 @@ XPUOpMap& get_kl3_ops() {
XPUKernelSet({phi::DataType::FLOAT32,
phi::DataType::FLOAT16,
phi::DataType::BFLOAT16})},
{"group_norm_grad", XPUKernelSet({phi::DataType::FLOAT32})},
{"group_norm_grad",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
{"meshgrid",
XPUKernelSet({phi::DataType::FLOAT32,
phi::DataType::INT32,
Expand Down
117 changes: 89 additions & 28 deletions paddle/phi/kernels/xpu/group_norm_grad_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ void GroupNormGradKernel(const Context& dev_ctx,
DenseTensor* d_scale,
DenseTensor* d_bias) {
using XPUType = typename XPUTypeTrait<T>::Type;
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int ret = xpu::SUCCESS;
const DataLayout data_layout = common::StringToDataLayout(data_layout_str);
const auto scale_ptr = scale.get_ptr();
const auto bias_ptr = bias.get_ptr();
Expand All @@ -66,49 +68,108 @@ void GroupNormGradKernel(const Context& dev_ctx,
auto* y_data = y.data<T>();
auto* d_x_data = d_x->data<T>();
auto* d_y_data = d_y.data<T>();
auto* mean_data = mean.data<T>();
auto* var_data = var.data<T>();
T* d_scale_data = nullptr;
float* d_scale_data_fp32 = nullptr;
if (d_scale) {
dev_ctx.template Alloc<T>(d_scale);
set_zero(dev_ctx, d_scale, static_cast<T>(0));
d_scale_data = d_scale->data<T>();
if (!std::is_same_v<XPUType, float>) {
d_scale_data_fp32 = RAII_GUARD.alloc_l3_or_gm<float>(d_scale->numel());
} else {
d_scale_data_fp32 = reinterpret_cast<float*>(d_scale_data);
}
}
T* d_bias_data = nullptr;
float* d_bias_data_fp32 = nullptr;
if (d_bias) {
dev_ctx.template Alloc<T>(d_bias);
set_zero(dev_ctx, d_bias, static_cast<T>(0));
d_bias_data = d_bias->data<T>();
if (!std::is_same_v<XPUType, float>) {
d_bias_data_fp32 = RAII_GUARD.alloc_l3_or_gm<float>(d_bias->numel());
} else {
d_bias_data_fp32 = reinterpret_cast<float*>(d_bias_data);
}
}

const T* scale_data = nullptr;
if (scale_ptr) scale_data = scale_ptr->data<T>();
const T* bias_data = nullptr;
if (bias_ptr) bias_data = bias_ptr->data<T>();
const float* scale_data = nullptr;
if (scale_ptr) {
if (!std::is_same_v<XPUType, float>) {
float* scale_data_tmp =
RAII_GUARD.alloc_l3_or_gm<float>(scale_ptr->numel());
ret = xpu::cast<XPUType, float>(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(scale_ptr->data<T>()),
scale_data_tmp,
scale_ptr->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "cast");
scale_data = scale_data_tmp;
} else {
scale_data = scale_ptr->data<float>();
}
}
const float* bias_data = nullptr;
if (bias_ptr) {
if (!std::is_same_v<XPUType, float>) {
float* bias_data_tmp =
RAII_GUARD.alloc_l3_or_gm<float>(bias_ptr->numel());
ret = xpu::cast<XPUType, float>(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(bias_ptr->data<T>()),
bias_data_tmp,
bias_ptr->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "cast");
bias_data = bias_data_tmp;
} else {
bias_data = bias_ptr->data<float>();
}
}

int r = xpu::group_norm_grad<XPUType>(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x_data),
reinterpret_cast<const XPUType*>(y_data),
reinterpret_cast<const XPUType*>(d_y_data),
reinterpret_cast<XPUType*>(d_x_data),
N,
C,
L,
1,
groups,
static_cast<XPUType>(epsilon),
reinterpret_cast<const XPUType*>(scale_data),
reinterpret_cast<const XPUType*>(bias_data),
reinterpret_cast<const XPUType*>(mean_data),
reinterpret_cast<const XPUType*>(var_data),
reinterpret_cast<XPUType*>(d_scale_data),
reinterpret_cast<XPUType*>(d_bias_data),
channel_first);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "group_norm_grad");
ret =
xpu::group_norm_grad<XPUType>(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x_data),
reinterpret_cast<const XPUType*>(y_data),
reinterpret_cast<const XPUType*>(d_y_data),
reinterpret_cast<XPUType*>(d_x_data),
N,
C,
L,
1,
groups,
epsilon,
scale_data,
bias_data,
mean.data<float>(),
var.data<float>(),
d_scale_data_fp32,
d_bias_data_fp32,
channel_first);
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "group_norm_grad");
if (!std::is_same_v<XPUType, float>) {
if (d_scale) {
ret = xpu::cast<float, XPUType>(dev_ctx.x_context(),
d_scale_data_fp32,
reinterpret_cast<XPUType*>(d_scale_data),
d_scale->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "cast");
}

if (d_bias) {
ret = xpu::cast<float, XPUType>(dev_ctx.x_context(),
d_bias_data_fp32,
reinterpret_cast<XPUType*>(d_bias_data),
d_bias->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "cast");
}
}
}

} // namespace phi

PD_REGISTER_KERNEL(
group_norm_grad, XPU, ALL_LAYOUT, phi::GroupNormGradKernel, float) {}
PD_REGISTER_KERNEL(group_norm_grad,
XPU,
ALL_LAYOUT,
phi::GroupNormGradKernel,
float,
phi::dtype::float16) {}
84 changes: 81 additions & 3 deletions test/xpu/test_group_norm_op_xpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
from get_test_cover_info import (
XPUOpTestWrapper,
create_test_class,
get_xpu_op_support_types,
)
from op_test import OpTest
from op_test_xpu import XPUOpTest
Expand Down Expand Up @@ -99,10 +98,89 @@ def init_test_case(self):
self.attrs = {'epsilon': 1e-5, 'groups': 2, 'data_layout': "NHWC"}


support_types = get_xpu_op_support_types('group_norm')
for stype in support_types:
for stype in ["float32"]:
create_test_class(globals(), XPUTestGroupNormOp, stype)


class TestGroupNormFP16(unittest.TestCase):
def setUp(self):
self.shape = [2, 100, 3, 5]
self.data_format = "NCHW"
self.epsilon = 1e-5
self.groups = 2

def test_dygraph(self):
paddle.disable_static()
inp = np.random.random(self.shape).astype("float16")
if self.data_format == "NHWC":
inp = np.transpose(inp, (0, 2, 3, 1))
scale = np.random.random([self.shape[1]]).astype("float16")
bias = np.random.random([self.shape[1]]).astype("float16")
inp_fp16 = paddle.to_tensor(inp, stop_gradient=False)
scale_fp16 = paddle.to_tensor(scale, stop_gradient=False)
bias_fp16 = paddle.to_tensor(bias, stop_gradient=False)

inp_fp32 = paddle.to_tensor(inp.astype("float32"), stop_gradient=False)
scale_fp32 = paddle.to_tensor(
scale.astype("float32"), stop_gradient=False
)
bias_fp32 = paddle.to_tensor(
bias.astype("float32"), stop_gradient=False
)

out_fp32 = paddle.nn.functional.group_norm(
inp_fp32,
self.groups,
self.epsilon,
scale_fp32,
bias_fp32,
self.data_format,
)
out_fp32.mean().backward()
inp_grad_fp32 = inp_fp32.grad.numpy()
scale_grad_fp32 = scale_fp32.grad.numpy()
bias_grad_fp32 = bias_fp32.grad.numpy()

out_fp16 = paddle.nn.functional.group_norm(
inp_fp16,
self.groups,
self.epsilon,
scale_fp16,
bias_fp16,
self.data_format,
)
out_fp16.mean().backward()
inp_grad_fp16 = inp_fp16.grad.numpy()
scale_grad_fp16 = scale_fp16.grad.numpy()
bias_grad_fp16 = bias_fp16.grad.numpy()

np.testing.assert_allclose(
out_fp32.numpy(),
out_fp16.numpy().astype("float32"),
atol=0.001,
rtol=0.001,
)
np.testing.assert_allclose(
inp_grad_fp32,
inp_grad_fp16.astype("float32"),
atol=0.001,
rtol=0.001,
)
np.testing.assert_allclose(
scale_grad_fp32,
scale_grad_fp16.astype("float32"),
atol=1e-4,
rtol=1e-4,
)
np.testing.assert_allclose(
bias_grad_fp32,
bias_grad_fp16.astype("float32"),
atol=1e-4,
rtol=1e-4,
)
paddle.enable_static()


if __name__ == "__main__":
paddle.enable_static()
unittest.main()