Skip to content

Add CSPResNet #117

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
May 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions configs/CSPNet/CSPResNet50.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
mode: 'train'
ARCHITECTURE:
name: 'CSPResNet50_leaky'

pretrained_model: ""
model_save_dir: "./output/"
classes_num: 1000
total_images: 1281167
save_interval: 1
validate: True
valid_interval: 1
epochs: 120
topk: 5
image_shape: [3, 256, 256]

use_mix: False
ls_epsilon: -1

LEARNING_RATE:
function: 'Piecewise'
params:
lr: 0.1
decay_epochs: [30, 60, 90]
gamma: 0.1

OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.000100

TRAIN:
batch_size: 256
num_workers: 4
file_list: "./dataset/ILSVRC2012/train_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 256
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:

VALID:
batch_size: 64
num_workers: 4
file_list: "./dataset/ILSVRC2012/val_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
20 changes: 11 additions & 9 deletions ppcls/modeling/architectures/__init__.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .alexnet import AlexNet
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x1_0, MobileNetV1_x0_75, MobileNetV1
Expand Down Expand Up @@ -45,3 +45,5 @@

# distillation model
from .distillation_models import ResNet50_vd_distill_MobileNetV3_large_x1_0, ResNeXt101_32x16d_wsl_distill_ResNet50_vd

from .csp_resnet import CSPResNet50_leaky
258 changes: 258 additions & 0 deletions ppcls/modeling/architectures/csp_resnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
"CSPResNet50_leaky", "CSPResNet50_mish", "CSPResNet101_leaky",
"CSPResNet101_mish"
]


class CSPResNet():
def __init__(self, layers=50, act="leaky_relu"):
self.layers = layers
self.act = act

def net(self, input, class_dim=1000, data_format="NCHW"):
layers = self.layers
supported_layers = [50, 101]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)

if layers == 50:
depth = [3, 3, 5, 2]
elif layers == 101:
depth = [3, 3, 22, 2]

num_filters = [64, 128, 256, 512]

conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act=self.act,
name="conv1",
data_format=data_format)
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max',
data_format=data_format)

for block in range(len(depth)):
conv_name = "res" + str(block + 2) + chr(97)
if block != 0:
conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block],
filter_size=3,
stride=2,
act=self.act,
name=conv_name + "_downsample",
data_format=data_format)

# split
left = conv
right = conv
if block == 0:
ch = num_filters[block]
else:
ch = num_filters[block] * 2
right = self.conv_bn_layer(
input=right,
num_filters=ch,
filter_size=1,
act=self.act,
name=conv_name + "_right_first_route",
data_format=data_format)

for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)

right = self.bottleneck_block(
input=right,
num_filters=num_filters[block],
stride=1,
name=conv_name,
data_format=data_format)

# route
left = self.conv_bn_layer(
input=left,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_left_route",
data_format=data_format)
right = self.conv_bn_layer(
input=right,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_right_route",
data_format=data_format)
conv = fluid.layers.concat([left, right], axis=1)

conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block] * 2,
filter_size=1,
stride=1,
act=self.act,
name=conv_name + "_merged_transition",
data_format=data_format)

pool = fluid.layers.pool2d(
input=conv,
pool_type='avg',
global_pooling=True,
data_format=data_format)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name="fc_0.w_0",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"))
return out

def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format='NCHW'):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1',
data_format=data_format)

if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
bn = fluid.layers.batch_norm(
input=conv,
act=None,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
data_layout=data_format)
if act == "relu":
bn = fluid.layers.relu(bn)
elif act == "leaky_relu":
bn = fluid.layers.leaky_relu(bn)
elif act == "mish":
bn = self._mish(bn)
return bn

def _mish(self, input):
return input * fluid.layers.tanh(self._softplus(input))

def _softplus(self, input):
expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50))
return fluid.layers.log(1 + expf)

def shortcut(self, input, ch_out, stride, is_first, name, data_format):
if data_format == 'NCHW':
ch_in = input.shape[1]
else:
ch_in = input.shape[-1]
if ch_in != ch_out or stride != 1 or is_first is True:
return self.conv_bn_layer(
input, ch_out, 1, stride, name=name, data_format=data_format)
else:
return input

def bottleneck_block(self, input, num_filters, stride, name, data_format):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act="leaky_relu",
name=name + "_branch2a",
data_format=data_format)
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="leaky_relu",
name=name + "_branch2b",
data_format=data_format)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 2,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)

short = self.shortcut(
input,
num_filters * 2,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)

ret = short + conv2
ret = fluid.layers.leaky_relu(ret, alpha=0.1)
return ret


def CSPResNet50_leaky():
model = CSPResNet(layers=50, act="leaky_relu")
return model


def CSPResNet50_mish():
model = CSPResNet(layers=50, act="mish")
return model


def CSPResNet101_leaky():
model = CSPResNet(layers=101, act="leaky_relu")
return model


def CSPResNet101_mish():
model = CSPResNet(layers=101, act="mish")
return model
10 changes: 5 additions & 5 deletions ppcls/utils/model_zoo.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,9 +58,9 @@ def __init__(self, url='', times=''):
super(RetryError, self).__init__(message)


def _get_url(architecture):
def _get_url(architecture, postfix="tar"):
prefix = "https://paddle-imagenet-models-name.bj.bcebos.com/"
fname = architecture + "_pretrained.tar"
fname = architecture + "_pretrained." + postfix
return prefix + fname


Expand Down Expand Up @@ -193,13 +193,13 @@ def list_models():
return


def get(architecture, path, decompress=True):
def get(architecture, path, decompress=True, postfix="tar"):
"""
Get the pretrained model.
"""
_check_pretrained_name(architecture)
url = _get_url(architecture)
url = _get_url(architecture, postfix=postfix)
fname = _download(url, path)
if decompress:
if postfix == "tar" and decompress:
_decompress(fname)
logger.info("download {} finished ".format(fname))
Loading