Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 87 additions & 42 deletions paddlenlp/trainer/integrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,81 +403,126 @@ def on_save(self, args, state, control, **kwargs):

class SwanLabCallback(TrainerCallback):
"""
A [`TrainerCallback`] that logs metrics, media to [Swanlab](https://swanlab.cn/).
A [`TrainerCallback`] that logs metrics, media, model checkpoints to [SwanLab](https://swanlab.cn/).
"""

def __init__(self):
has_swanlab = is_swanlab_available()
if not has_swanlab:
raise RuntimeError("SwanlabCallback requires swanlab to be installed. Run `pip install swanlab`.")
if has_swanlab:
import swanlab

self._swanlab = swanlab
if not is_swanlab_available():
raise RuntimeError("SwanLabCallback requires swanlab to be installed. Run `pip install swanlab`.")
import swanlab

self._swanlab = swanlab
self._initialized = False
self._log_model = os.getenv("SWANLAB_LOG_MODEL", None)

def setup(self, args, state, model, **kwargs):
"""
Setup the optional Swanlab integration.

One can subclass and override this method to customize the setup if needed.
variables:
Setup the optional SwanLab (*swanlab*) integration.
One can subclass and override this method to customize the setup if needed. Find more information
[here](https://docs.swanlab.cn/guide_cloud/integration/integration-huggingface-transformers.html).
You can also override the following environment variables. Find more information about environment
variables [here](https://docs.swanlab.cn/en/api/environment-variable.html#environment-variables)
Environment:
- **SWANLAB_MODE** (`str`, *optional*, defaults to `"cloud"`):
Whether to use swanlab cloud, local or disabled. Set `SWANLAB_MODE="local"` to use local. Set `SWANLAB_MODE="disabled"` to disable.
- **SWANLAB_PROJECT** (`str`, *optional*, defaults to `"PaddleNLP"`):
Set this to a custom string to store results in a different project.
- **SWANLAB_API_KEY** (`str`, *optional*, defaults to `None`):
Cloud API Key. During login, this environment variable is checked first. If it doesn't exist, the system
checks if the user is already logged in. If not, the login process is initiated.
- If a string is passed to the login interface, this environment variable is ignored.
- If the user is already logged in, this environment variable takes precedence over locally stored
login information.
- **SWANLAB_PROJECT** (`str`, *optional*, defaults to `None`):
Set this to a custom string to store results in a different project. If not specified, the name of the current
running directory is used.
- **SWANLAB_LOG_DIR** (`str`, *optional*, defaults to `swanlog`):
This environment variable specifies the storage path for log files when running in local mode.
By default, logs are saved in a folder named swanlog under the working directory.
- **SWANLAB_MODE** (`Literal["local", "cloud", "disabled"]`, *optional*, defaults to `cloud`):
SwanLab's parsing mode, which involves callbacks registered by the operator. Currently, there are three modes:
local, cloud, and disabled. Note: Case-sensitive. Find more information
[here](https://docs.swanlab.cn/en/api/py-init.html#swanlab-init)
- **SWANLAB_LOG_MODEL** (`str`, *optional*, defaults to `None`):
SwanLab does not currently support the save mode functionality.This feature will be available in a future
release
- **SWANLAB_WEB_HOST** (`str`, *optional*, defaults to `None`):
Web address for the SwanLab cloud environment for private version (its free)
- **SWANLAB_API_HOST** (`str`, *optional*, defaults to `None`):
API address for the SwanLab cloud environment for private version (its free)
"""

if self._swanlab is None:
return

self._initialized = True

if state.is_world_process_zero:
logger.info('Automatic Swanlab logging enabled, to disable set os.environ["SWANLAB_MODE"] = "disabled"')

logger.info('Automatic SwanLab logging enabled, to disable set os.environ["SWANLAB_MODE"] = "disabled"')
combined_dict = {**args.to_dict()}

if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
model_config = model.config if isinstance(model.config, dict) else model.config.to_dict()
combined_dict = {**model_config, **combined_dict}

if hasattr(model, "lora_config") and model.lora_config is not None:
lora_config = model.lora_config if isinstance(model.lora_config, dict) else model.lora_config.to_dict()
combined_dict = {**{"lora_config": lora_config}, **combined_dict}
trial_name = state.trial_name
init_args = {}
if trial_name is not None:
init_args["name"] = trial_name
init_args["group"] = args.run_name
else:
if not (args.run_name is None or args.run_name == args.output_dir):
init_args["name"] = args.run_name
init_args["dir"] = args.logging_dir
if trial_name is not None and args.run_name is not None:
init_args["experiment_name"] = f"{args.run_name}-{trial_name}"
elif args.run_name is not None:
init_args["experiment_name"] = args.run_name
elif trial_name is not None:
init_args["experiment_name"] = trial_name
init_args["project"] = os.getenv("SWANLAB_PROJECT", "PaddleNLP")
if args.logging_dir is not None:
init_args["logdir"] = os.getenv("SWANLAB_LOG_DIR", args.logging_dir)

if self._swanlab.get_run() is None:
self._swanlab.init(
project=os.getenv("SWANLAB_PROJECT", "PaddleNLP"),
**init_args,
)
self._swanlab.config.update(combined_dict, allow_val_change=True)
# show paddlenlp logo!
self._swanlab.config["FRAMEWORK"] = "paddlenlp"
# add config parameters (run may have been created manually)
self._swanlab.config.update(combined_dict)

def on_train_begin(self, args, state, control, model=None, **kwargs):
if self._swanlab is None:
return
if not self._initialized:
self.setup(args, state, model, **kwargs)

def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._swanlab is None:
return
def on_train_end(self, args, state, control, model=None, processing_class=None, **kwargs):
if self._log_model is not None and self._initialized and state.is_world_process_zero:
logger.warning(
"SwanLab does not currently support the save mode functionality. "
"This feature will be available in a future release."
)

def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if self._swanlab is None:
return
single_value_scalars = [
"train_runtime",
"train_samples_per_second",
"train_steps_per_second",
"train_loss",
"total_flos",
]

if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
logs = rewrite_logs(logs)
self._swanlab.log({**logs, "train/global_step": state.global_step}, step=state.global_step)
for k, v in logs.items():
if k in single_value_scalars:
self._swanlab.log({f"single_value/{k}": v}, step=state.global_step)
non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars}
non_scalar_logs = rewrite_logs(non_scalar_logs)
self._swanlab.log({**non_scalar_logs, "train/global_step": state.global_step}, step=state.global_step)

def on_save(self, args, state, control, **kwargs):
if self._log_model is not None and self._initialized and state.is_world_process_zero:
logger.warning(
"SwanLab does not currently support the save mode functionality. "
"This feature will be available in a future release."
)

def on_predict(self, args, state, control, metrics, **kwargs):
if not self._initialized:
self.setup(args, state, **kwargs)
if state.is_world_process_zero:
metrics = rewrite_logs(metrics)
self._swanlab.log(metrics)


class AutoNLPCallback(TrainerCallback):
Expand Down
Loading