Skip to content

add ffm #40

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 5, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions models/rank/ffm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
74 changes: 74 additions & 0 deletions models/rank/ffm/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# global settings
debug: false
workspace: "paddlerec.models.rank.fm"

dataset:
- name: train_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"
- name: infer_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"

hyper_parameters:
# 用户自定义配置
optimizer:
class: Adam
learning_rate: 0.0001
sparse_feature_number: 1086460
sparse_feature_dim: 9
is_sparse: False
reg: 0.001
num_field: 39

mode: train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"

runner:
- name: train_runner
trainer_class: single_train
epochs: 1
device: cpu
init_model_path: ""
save_checkpoint_interval: 1
save_inference_interval: 1
save_checkpoint_path: "increment"
save_inference_path: "inference"
print_interval: 1
- name: infer_runner
trainer_class: single_infer
epochs: 1
device: cpu
init_model_path: "increment/0"
print_interval: 1

phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: train_sample
thread_num: 1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
136 changes: 136 additions & 0 deletions models/rank/ffm/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict

import paddle.fluid as fluid

from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase


class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)

def _init_hyper_parameters(self):
self.is_distributed = True if envs.get_trainer(
) == "CtrTrainer" else False
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None)
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None)
self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
self.num_field = envs.get_global_env("hyper_parameters.num_field",
None)

def net(self, inputs, is_infer=False):
raw_feat_idx = self._sparse_data_var[1] # (batch_size * num_field) * 1
raw_feat_value = self._dense_data_var[0] # batch_size * num_field
self.label = self._sparse_data_var[0] # batch_size * 1

init_value_ = 0.1

feat_idx = raw_feat_idx
feat_value = fluid.layers.reshape(
raw_feat_value,
[-1, self.num_field, 1]) # batch_size * num_field * 1

# ------------------------- first order term --------------------------

first_weights_re = fluid.embedding(
input=feat_idx,
is_sparse=True,
is_distributed=self.is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, 1],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_),
regularizer=fluid.regularizer.L1DecayRegularizer(self.reg))
) # (batch_size * num_field) * 1 * 1(embedding_size)
first_weights = fluid.layers.reshape(
first_weights_re,
shape=[-1, self.num_field, 1]) # batch_size * num_field * 1
y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
1) # batch_size * 1
b_linear = fluid.layers.create_parameter(
shape=[1],
dtype='float32',
default_initializer=fluid.initializer.ConstantInitializer(
value=0)) # 1
# ------------------------- Field-aware second order term --------------------------

embedding_size_for_all_field = self.num_field * self.sparse_feature_dim
feat_embeddings_re = fluid.embedding(
input=feat_idx,
is_sparse=True,
is_distributed=self.is_distributed,
dtype='float32',
size=[
self.sparse_feature_number + 1, embedding_size_for_all_field
],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(embedding_size_for_all_field))))
) # (batch_size * num_field) * 1 * embedding_size
feat_embeddings = fluid.layers.reshape(
feat_embeddings_re,
shape=[-1, self.num_field, embedding_size_for_all_field
]) # batch_size * num_field * embedding_size
feat_embeddings = feat_embeddings * feat_value # batch_size * num_field * (embedding_size * num_field)

field_aware_feat_embedding = fluid.layers.reshape(
feat_embeddings,
shape=[
-1, self.num_field, self.num_field, self.sparse_feature_dim
])
field_aware_interaction_list = []
for i in range(self.num_field):
for j in range(i + 1, self.num_field):
field_aware_interaction_list.append(
fluid.layers.reduce_sum(
field_aware_feat_embedding[:, i, j, :] *
field_aware_feat_embedding[:, j, i, :],
dim=1,
keep_dim=True))
y_field_aware_second_order = fluid.layers.sum(
field_aware_interaction_list)

# ------------------------- Predict --------------------------

self.predict = fluid.layers.sigmoid(b_linear + y_first_order +
y_field_aware_second_order)

cost = fluid.layers.log_loss(
input=self.predict, label=fluid.layers.cast(self.label,
"float32")) # log_loss
avg_cost = fluid.layers.reduce_sum(cost)

self._cost = avg_cost

predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var