Skip to content

new representation docs #225

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
136 changes: 68 additions & 68 deletions docs/locale/zh_CN/LC_MESSAGES/source/modules/models/representation.po
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-11-01 15:19+0800\n"
"POT-Creation-Date: 2022-11-03 19:00+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
Expand All @@ -18,12 +18,12 @@ msgstr ""
"Generated-By: Babel 2.10.3\n"

#: ../../source/modules/models/representation.rst:3
#: 9b064944e0964bdbbb2915390845514f
#: 2129e18757cd45339d97c4e5a75d789d
msgid "Representation Model Tutorial"
msgstr "表征模型使用教程"

#: ../../source/modules/models/representation.rst:5
#: abd881ced8334a62ad29b17617645b05
#: 5896660fa6c1416ba7b4f5776d48051f
msgid ""
"The representation model (TS2Vec) is one of the self-supervised models, "
"mainly hoping to learn a general feature expression for downstream tasks."
Expand All @@ -33,155 +33,155 @@ msgid ""
msgstr "表征模型(TS2Vec)属于自监督模型里的一种,主要是希望能够学习到一种通用的特征表达用于下游任务;当前主流的自监督学习主要有基于生成式和基于对比学习的方法,当前案例使用的TS2Vec模型是一种基于对比学习的自监督模型"

#: ../../source/modules/models/representation.rst:9
#: 3025ac9aaf0446fc95a211d81437c9ce
#: 09155f9a2ee447c7bb16e3599abba6b9
msgid "The use of self-supervised models is divided into two phases:"
msgstr "自监督模型的使用一般分为两个阶段"

#: ../../source/modules/models/representation.rst:8
#: 771b57b7651b4109bb60e44ec04edb0b
#: 79f6b680fde64c7a81536cfdf190cb88
msgid "Pre-training with unlabeled data, independent of downstream tasks"
msgstr "不涉及任何下游任务,使用无标签的数据进行预训练"

#: ../../source/modules/models/representation.rst:9
#: 259b6005c1124e83a51050a77e625e80
#: 49fb481f64bb4045809861500e6f6265
msgid "Fine-tune on downstream tasks using labeled data"
msgstr "使用带标签的数据在下游任务上 Fine-tune"

#: ../../source/modules/models/representation.rst:13
#: c847d4c3b8aa47fb914da3ecec97be17
#: 95ca2edf84d247038fa0547759e6c9cb
msgid "TS2Vec follows the usage paradigm of self-supervised models:"
msgstr "TS2Vec结合下游任务的使用同样遵循自监督模型的使用范式,分为2个阶段:"

#: ../../source/modules/models/representation.rst:12
#: 36866eb1d84442109043c8f4f1b5e07f
#: 765c6f6c9a05406eac590aa81eab9de3
msgid "Representational model training"
msgstr "表征模型训练"

#: ../../source/modules/models/representation.rst:13
#: 71ec4f51da22462e8981f16fcca546a0
#: fec2e8aa03ec49c4b19edb67a882af84
msgid ""
"Use the output of the representation model for the downstream task (the "
"downstream task of the current case is the prediction task)"
msgstr "将表征模型的输出用于下游任务(当前案例的下游任务为预测任务)"

#: ../../source/modules/models/representation.rst:17
#: 550841919e924e2fb9e52fbd95245cd0
#: 6d77625749df473f8ead84b68e0b31de
msgid ""
"For the sake of accommodating both beginners and experienced developers, "
"there are two ways to use representation tasks:"
msgstr "为兼顾初学者和有一定的经验的开发者,本文给出两种表征任务的使用方法:"

#: ../../source/modules/models/representation.rst:16
#: dbd70c46672c464abdd8e66e49feaf92
#: 42e63162d16042c29c6341bfbfa4b097
msgid ""
"A pipeline that combines the representation model and downstream tasks, "
"which is very friendly to beginners"
msgstr "表征模型和下游任务相结合的pipeline,初学者容易上手使用"

#: ../../source/modules/models/representation.rst:17
#: 108a7dc6375249d48c832583ae037860
#: c47fdd248d0d40a5b53b53401284fe94
msgid ""
"Decoupling the representational model and downstream tasks, showing in "
"detail how the representational model and downstream tasks are used in "
"combination"
msgstr "表征模型和下游任务解耦,详细展示表征模型和下游任务如何相结合使用"

#: ../../source/modules/models/representation.rst:20
#: 2d31625f0fdd48609b97bd524cb2e7a5
msgid "Method one"
msgstr "使用方法一"
#: 7795706790b54c6cb6254116d2a288c0
msgid "1. Method one"
msgstr "1. 方法一"

#: ../../source/modules/models/representation.rst:22
#: 18b9f26fe49b4f30b773d8fb3f34f639
#: 8a8be0919e1f4431af5cb789ac8da2b3
msgid "A pipeline that combines the representation model and downstream tasks"
msgstr "表征模型和下游任务相结合的pipeline"

#: ../../source/modules/models/representation.rst:25
#: 26e917470da34204b8a544ab27cd7341
msgid "Prepare the data"
#: b52cd7e6c4b740929c5cdffa4f1302c5
msgid "1.1 Prepare the data"
msgstr "准备数据集"

#: ../../source/modules/models/representation.rst:45
#: b13f51b26893463ebc91a547a228ff75
msgid "Training"
#: ../../source/modules/models/representation.rst:44
#: a91871d5d4a8494492c5dac6bab66299
msgid "1.2 Training"
msgstr "训练"

#: ../../source/modules/models/representation.rst:61
#: bd7972f40530496b9e2ec804ff408312
msgid "Prediction"
#: 71db106f238e4055871114df13d66948
msgid "1.3 Prediction"
msgstr "预测"

#: ../../source/modules/models/representation.rst:67
#: c343a6b1e1d640a08f30c310f93a9cff
msgid "Backtest"
#: ../../source/modules/models/representation.rst:68
#: 520a95c9594449938c591ae52057a5bc
msgid "1.4 Backtest"
msgstr "回测"

#: ../../source/modules/models/representation.rst:81
#: bd7175abbd8c45ea8088352499788ea4
msgid "Method two"
msgstr "使用方法二"

#: ../../source/modules/models/representation.rst:83
#: e07ddc48cb9d4d28a6670b3b417f1084
#: bc4059a9057b487e9617723ddd54b037
msgid "2. Method two"
msgstr "2. 方法二"

#: ../../source/modules/models/representation.rst:85
#: 9f53fba5287d473abe61e9945e8f88e6
msgid ""
"Decoupling the representational model and downstream tasks. It's divided "
"into two stages, the first stage is representation model training and "
"prediction, and the second stage is the training and prediction of "
"downstream tasks"
msgstr "表征模型和下游回归任务解藕. 分为两个阶段,第一阶段是表征模型的训练和预测,第二阶段是下游任务模型的训练和预测"
msgstr "表征模型和下游回归任务解耦. 分为两个阶段,第一阶段是表征模型的训练和预测,第二阶段是下游任务模型的训练和预测"

#: ../../source/modules/models/representation.rst:86
#: bec3f1fdcff040eca38c6d9b92102ef0
msgid "1. The first stage:"
#: ../../source/modules/models/representation.rst:87
#: da94ae067fa54515b66dfd73a0a426df
msgid "The first stage:"
msgstr "第一阶段:"

#: ../../source/modules/models/representation.rst:87
#: 56576ed054584365b4e5985058b0b7c8
#: ../../source/modules/models/representation.rst:89
#: a5b0f8777bf64ba6bc19bcc51fb61a89
msgid "Training of the representation model"
msgstr "表征模型训练"

#: ../../source/modules/models/representation.rst:88
#: 6fd9a537483d47a69fd323596fbbdf18
#: ../../source/modules/models/representation.rst:90
#: 47194a7a5d8d4b23bf90bbad849191be
msgid "Output of training set and test set representation results"
msgstr "输出训练集和测试集的表征结果"

#: ../../source/modules/models/representation.rst:92
#: 230b62e6ade9443493cafb3b84f7374d
msgid "1.1 Prepare the data"
msgstr "准备数据集"

#: ../../source/modules/models/representation.rst:111
#: f5c8ed59f85244b8934e9df6882b63a5
msgid "1.2 Training of the representation model"
msgstr "表征模型训练"
#: 9b8d6802816b4626866c736827d7c88b
msgid "The second stage:"
msgstr "第二阶段:"

#: ../../source/modules/models/representation.rst:126
#: 1f2ca0e0cae941f9a95091f2dfb1d196
msgid "1.3 Output of training set and test set representation results"
msgstr "输出训练集和测试集的表征结果"

#: ../../source/modules/models/representation.rst:136
#: d194f7b4827741abb800c8f8fa463d1c
msgid "2. The second stage:"
msgstr "第二阶段"

#: ../../source/modules/models/representation.rst:137
#: 725503101ee545309d47377830437ec8
#: ../../source/modules/models/representation.rst:94
#: 78d575ebea984274a3148c6c2dba837f
msgid "Build training and test samples for regression models"
msgstr "构建回归模型的训练和测试样本"

#: ../../source/modules/models/representation.rst:138
#: 2d5a609b4f8545eb8f54c1c3e0bb5636
#: ../../source/modules/models/representation.rst:95
#: b973d5de54c64be8b5943c319aa34d75
msgid "training and prediction"
msgstr "训练和预测"

#: ../../source/modules/models/representation.rst:141
#: 73afc3be00df4cc7941c7acf12e358be
msgid "2.1 Build training and test samples for regression models"
#: ../../source/modules/models/representation.rst:99
#: d9201c888f4a4a14b3a2fc008322b158
msgid "2.1 Prepare the data"
msgstr "准备数据集"

#: ../../source/modules/models/representation.rst:117
#: 262ab9ad28c24431956b37d12996ef0f
msgid "2.2 Training of the representation model"
msgstr "表征模型训练"

#: ../../source/modules/models/representation.rst:133
#: 16eb6ad99a3848fdbe1bc734eecc2e0b
msgid "2.3 Output of training set and test set representation results"
msgstr "输出训练集和测试集的表征结果"

#: ../../source/modules/models/representation.rst:145
#: 2a0b3a5f49c14282a3604b330715115b
msgid "2.4 Build training and test samples for regression models"
msgstr "构建回归模型的训练和测试样本"

#: ../../source/modules/models/representation.rst:167
#: ed3d7f9d693d4fbba33ef4a5196ffe81
msgid "2.2 Training and prediction"
#: ../../source/modules/models/representation.rst:172
#: ff0a0ac6b9c24b9caf5a1841744766eb
msgid "2.5 Training and prediction"
msgstr "训练和预测"

66 changes: 38 additions & 28 deletions docs/source/modules/models/representation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,14 @@ For the sake of accommodating both beginners and experienced developers, there a
- A pipeline that combines the representation model and downstream tasks, which is very friendly to beginners
- Decoupling the representational model and downstream tasks, showing in detail how the representational model and downstream tasks are used in combination

Method one
1. Method one
=================

A pipeline that combines the representation model and downstream tasks

Prepare the data
================
1.1 Prepare the data
--------------------

.. code-block:: python

import numpy as np
Expand All @@ -39,8 +40,9 @@ Prepare the data
data, _ = data.split('2016-09-22 06:00:00')
train_data, test_data = data.split('2016-09-21 05:00:00')

Training
========
1.2 Training
------------

.. code-block:: python

ts2vec_params = {"segment_size": 200,
Expand All @@ -55,14 +57,16 @@ Training
repr_model_params=ts2vec_params)
model.fit(train_data)

Prediction
==========
1.3 Prediction
--------------

.. code-block:: python

model.predict(train_data)

Backtest
========
1.4 Backtest
------------

.. code-block:: python

from paddlets.utils.backtest import backtest
Expand All @@ -75,19 +79,25 @@ Backtest
return_predicts=True)


Method two
2. Method two
=================

Decoupling the representational model and downstream tasks. It's divided into two stages, the first stage is representation model training and prediction, and the second stage is the training and prediction of downstream tasks

1. The first stage:
===================
- Training of the representation model
- Output of training set and test set representation results
The first stage:

- Training of the representation model
- Output of training set and test set representation results

The second stage:

- Build training and test samples for regression models
- training and prediction


2.1 Prepare the data
--------------------

1.1 Prepare the data
====================
.. code-block:: python

import numpy as np
Expand All @@ -103,8 +113,9 @@ Decoupling the representational model and downstream tasks. It's divided into tw
data, _ = data.split('2016-09-22 06:00:00')
train_data, test_data = data.split('2016-09-21 05:00:00')

1.2 Training of the representation model
========================================
2.2 Training of the representation model
----------------------------------------

.. code-block:: python

# initialize the TS2Vect object
Expand All @@ -118,8 +129,9 @@ Decoupling the representational model and downstream tasks. It's divided into tw
# training
ts2vec.fit(train_data)

1.3 Output of training set and test set representation results
==============================================================
2.3 Output of training set and test set representation results
--------------------------------------------------------------

.. code-block:: python

sliding_len = 200 # Use past sliding_len length points to infer the representation of the current point in time
Expand All @@ -128,13 +140,10 @@ Decoupling the representational model and downstream tasks. It's divided into tw
train_reprs = all_reprs[:, :split_tag]
test_reprs = all_reprs[:, split_tag:]

2. The second stage:
=======================
- Build training and test samples for regression models
- training and prediction

2.1 Build training and test samples for regression models
=========================================================
2.4 Build training and test samples for regression models
---------------------------------------------------------

.. code-block:: python

# generate samples
Expand All @@ -159,8 +168,9 @@ Decoupling the representational model and downstream tasks. It's divided into tw
test_to_numpy = np.expand_dims(test_to_numpy, 0)
test_features, test_labels = generate_pred_samples(test_reprs, test_to_numpy, pre_len)

2.2 Training and prediction
===========================
2.5 Training and prediction
---------------------------

.. code-block:: python

# training
Expand Down