Skip to content

[PIR] Migrate paddle.static.nn.xx to paddle.nn.XX #2947

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 3 additions & 7 deletions distributed/CE_API/case/dist_CountFilterEntry.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,9 @@ def test_CountFilterEntry():

input = paddle.static.data(name="ins", shape=[1], dtype="int64")

emb = paddle.static.nn.sparse_embedding(
input=input,
size=[sparse_feature_dim, embedding_size],
is_test=False,
entry=entry,
param_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()),
)
Emb = paddle.nn.Embedding(num_embeddings=sparse_feature_dim, embedding_dim=embedding_size, sparse=True,
weight_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()))
emb = Emb(input)
print(emb)
print("test_CountFilterEntry ... ok")

Expand Down
10 changes: 3 additions & 7 deletions distributed/CE_API/case/dist_ProbabilityEntry.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,9 @@ def test_ProbabilityEntry():

input = paddle.static.data(name="ins", shape=[1], dtype="int64")

emb = paddle.static.nn.sparse_embedding(
input=input,
size=[sparse_feature_dim, embedding_size],
is_test=False,
entry=entry,
param_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()),
)
Emb = paddle.nn.Embedding(num_embeddings=sparse_feature_dim, embedding_dim=embedding_size, sparse=True,
weight_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()))
emb = Emb(input)
print(emb)
print("test_ProbabilityEntry ... ok")

Expand Down
12 changes: 4 additions & 8 deletions distributed/CE_API/case/dist_ShowClickEntry.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,10 @@ def test_ShowClickEntry():

entry = paddle.distributed.ShowClickEntry("show", "click")

emb = paddle.static.nn.sparse_embedding(
input=input,
size=[sparse_feature_dim, embedding_size],
is_test=False,
entry=entry,
param_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()),
)
assert emb.shape == (64,)
Emb = paddle.nn.Embedding(num_embeddings=sparse_feature_dim, embedding_dim=embedding_size, sparse=True,
weight_attr=paddle.ParamAttr(name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform()))
emb = Emb(input)
assert emb.shape == [1,64]

print("test_ShowClickEntry ... ok")

Expand Down
5 changes: 3 additions & 2 deletions distributed/CE_API/case/dist_fleet_qat_init.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@ def run_example_code():
exe = paddle.static.Executor(place)
# 1. Define the train program
data = paddle.static.data(name="X", shape=[None, 1, 28, 28], dtype="float32")
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
Conv = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=3)
conv2d = Conv(data)
bn = paddle.nn.BatchNorm2D(1)(conv2d)
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden)
Expand Down