Skip to content

修改COPY-FROM No. 19 distribution #5965

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 8 additions & 126 deletions docs/api/paddle/distribution/Bernoulli_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,25 +27,7 @@ Bernoulli
代码示例
::::::::::::

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

# init `probs` with a float
rv = Bernoulli(probs=0.3)

print(rv.mean)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.30000001)

print(rv.variance)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.21000001)

print(rv.entropy())
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.61086434)
COPY-FROM: paddle.distribution.Bernoulli

属性
:::::::::
Expand Down Expand Up @@ -86,26 +68,7 @@ Tensor,样本,其维度为 :math:`\text{sample shape} + \text{batch shape} +

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(paddle.full((), 0.3))
print(rv.sample([100]).shape)
# [100]

rv = Bernoulli(paddle.to_tensor(0.3))
print(rv.sample([100]).shape)
# [100]

rv = Bernoulli(paddle.to_tensor([0.3, 0.5]))
print(rv.sample([100]).shape)
# [100, 2]

rv = Bernoulli(paddle.to_tensor([0.3, 0.5]))
print(rv.sample([100, 2]).shape)
# [100, 2, 2]
COPY-FROM: paddle.distribution.Bernoulli.sample

rsample(shape, temperature=1.0)
'''''''''
Expand All @@ -132,46 +95,7 @@ Tensor,样本,其维度为 :math:`\text{sample shape} + \text{batch shape} +

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

paddle.seed(2023)

rv = Bernoulli(paddle.full((), 0.3))
print(rv.sample([100]).shape)
# [100]

rv = Bernoulli(0.3)
print(rv.rsample([100]).shape)
# [100]

rv = Bernoulli(paddle.to_tensor([0.3, 0.5]))
print(rv.rsample([100]).shape)
# [100, 2]

rv = Bernoulli(paddle.to_tensor([0.3, 0.5]))
print(rv.rsample([100, 2]).shape)
# [100, 2, 2]

# `rsample` has to be followed by a `sigmoid`
rv = Bernoulli(0.3)
rsample = rv.rsample([3])
rsample_sigmoid = paddle.nn.functional.sigmoid(rsample)
print(rsample, rsample_sigmoid)
# Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [-2.37732768, -0.61203325, -3.18344760]) Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [0.08491799, 0.35159552, 0.03979339])

# The smaller the `temperature`, the distribution of `rsample` closer to `sample`, with `probs` of 0.3.
print(paddle.nn.functional.sigmoid(rv.rsample([1000, ], temperature=1.0)).sum())
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 361.06829834)

print(paddle.nn.functional.sigmoid(rv.rsample([1000, ], temperature=0.1)).sum())
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 288.66418457)
COPY-FROM: paddle.distribution.Bernoulli.rsample

cdf(value)
'''''''''
Expand All @@ -197,15 +121,7 @@ Tensor, ``value`` 的累积分布函数。

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(0.3)
print(rv.cdf(paddle.to_tensor([1.0])))
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.])
COPY-FROM: paddle.distribution.Bernoulli.cdf

log_prob(value)
'''''''''
Expand All @@ -222,15 +138,7 @@ Tensor, ``value`` 的对数概率密度函数。

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(0.3)
print(rv.log_prob(paddle.to_tensor([1.0])))
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [-1.20397282])
COPY-FROM: paddle.distribution.Bernoulli.log_prob

prob(value)
'''''''''
Expand All @@ -255,15 +163,7 @@ Tensor, ``value`` 的概率密度函数。

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(0.3)
print(rv.prob(paddle.to_tensor([1.0])))
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.29999998])
COPY-FROM: paddle.distribution.Bernoulli.prob

entropy()
'''''''''
Expand All @@ -282,15 +182,7 @@ Tensor,伯努利分布的信息熵。

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(0.3)
print(rv.entropy())
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.61086434)
COPY-FROM: paddle.distribution.Bernoulli.entropy

kl_divergence(other)
'''''''''
Expand All @@ -313,14 +205,4 @@ Tensor,两个伯努利分布之间的 KL 散度。

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Bernoulli

rv = Bernoulli(0.3)
rv_other = Bernoulli(0.7)

print(rv.kl_divergence(rv_other))
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
# 0.33891910)
COPY-FROM: paddle.distribution.Bernoulli.kl_divergence
129 changes: 6 additions & 123 deletions docs/api/paddle/distribution/Categorical_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,43 +30,7 @@ Categorical
代码示例
::::::::::::

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

paddle.seed(200) # on CPU device
y = paddle.rand([6])
print(y)
# [0.77663314 0.90824795 0.15685187
# 0.04279523 0.34468332 0.7955718 ]

cat = Categorical(x)
cat2 = Categorical(y)

paddle.seed(1000) # on CPU device
cat.sample([2,3])
# [[0, 0, 5],
# [3, 4, 5]]

cat.entropy()
# 1.77528

cat.kl_divergence(cat2)
# [0.071952]

value = paddle.to_tensor([2,1,3])
cat.probs(value)
# [0.00608027 0.108298 0.269656]

cat.log_prob(value)
# [-5.10271 -2.22287 -1.31061]
COPY-FROM: paddle.distribution.Categorical


方法
Expand All @@ -87,23 +51,7 @@ sample(shape)

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

cat = Categorical(x)

paddle.seed(1000) # on CPU device
cat.sample([2,3])
# [[0, 0, 5],
# [3, 4, 5]]
COPY-FROM: paddle.distribution.Categorical.sample

kl_divergence(other)
'''''''''
Expand All @@ -120,28 +68,7 @@ kl_divergence(other)

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

paddle.seed(200) # on CPU device
y = paddle.rand([6])
print(y)
# [0.77663314 0.90824795 0.15685187
# 0.04279523 0.34468332 0.7955718 ]

cat = Categorical(x)
cat2 = Categorical(y)

cat.kl_divergence(cat2)
# [0.071952]
COPY-FROM: paddle.distribution.Categorical.kl_divergence

entropy()
'''''''''
Expand All @@ -154,21 +81,7 @@ entropy()

**代码示例**

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

cat = Categorical(x)

cat.entropy()
# 1.77528
COPY-FROM: paddle.distribution.Categorical.entropy

probs(value)
'''''''''
Expand All @@ -186,22 +99,7 @@ probs(value)

给定类别下标的概率。

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

cat = Categorical(x)

value = paddle.to_tensor([2,1,3])
cat.probs(value)
# [0.00608027 0.108298 0.269656]
COPY-FROM: paddle.distribution.Categorical.probs

log_prob(value)
'''''''''
Expand All @@ -216,19 +114,4 @@ log_prob(value)

对数概率。

.. code-block:: python

import paddle
from paddle.distribution import Categorical

paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x)
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]

cat = Categorical(x)

value = paddle.to_tensor([2,1,3])
cat.log_prob(value)
# [-5.10271 -2.22287 -1.31061]
COPY-FROM: paddle.distribution.Categorical.log_prob