Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions datvuthanh_hybridnets.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ background-class: hub-background
body-class: hub
category: researchers
title: HybridNets
summary: HybridNets - End2End Perception Network
summary: HybridNets - 종단간 인식 네트워크
image: hybridnets.jpg
author: Dat Vu Thanh
tags: [vision]
Expand All @@ -15,22 +15,22 @@ featured_image_2: no-image
accelerator: cuda-optional
demo-model-link: https://colab.research.google.com/drive/1Uc1ZPoPeh-lAhPQ1CloiVUsOIRAVOGWA
---
## Before You Start
## 시작하기 전에

Start from a **Python>=3.7** environment with **PyTorch>=1.10** installed. To install PyTorch see [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/). To install HybridNets dependencies:
**PyTorch>=1.10**이 설치된 **Python>=3.7** 환경 에서 시작합니다. PyTorch를 설치하려면 [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/) 를 참고하세요. HybridNets 종속 패키지를 설치하려면 아래 명령을 수행해주세요:
```bash
pip install -qr https://raw.githubusercontent.com/datvuthanh/HybridNets/main/requirements.txt # install dependencies
```

## Model Description
## 모델 설명

<img width="100%" src="https://github.com/datvuthanh/HybridNets/raw/main/images/hybridnets.jpg">

HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.
HybridNets는 다중 작업을 위한 종단간 인식 네트워크입니다. 이 다중 네크워크는 교통 물체 감지, 주행 가능 영역 분할 및 차선 감지에 중점을 두었습니다. HybridNets는 임베디드 시스템에서 실시간으로 실행할 수 있으며 BDD100K 데이터셋에서 최신 기술(state-of-the-art)의 수준의 물체 감지, 차선 감지 성능을 보여줍니다.

### Results
### 결과

### Traffic Object Detection
### 교통 물체 감지

| Model | Recall (%) | mAP@0.5 (%) |
|:------------------:|:------------:|:---------------:|
Expand All @@ -43,7 +43,7 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on

<img src="https://github.com/datvuthanh/HybridNets/raw/main/images/det1.jpg" width="50%" /><img src="https://github.com/datvuthanh/HybridNets/raw/main/images/det2.jpg" width="50%" />

### Drivable Area Segmentation
### 운전 가능 영역 분할

| Model | Drivable mIoU (%) |
|:----------------:|:-----------------:|
Expand All @@ -55,7 +55,7 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on

<img src="https://github.com/datvuthanh/HybridNets/raw/main/images/road1.jpg" width="50%" /><img src="https://github.com/datvuthanh/HybridNets/raw/main/images/road2.jpg" width="50%" />

### Lane Line Detection
### 차선 감지

| Model | Accuracy (%) | Lane Line IoU (%) |
|:----------------:|:------------:|:-----------------:|
Expand All @@ -70,9 +70,9 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on
<img width="100%" src="https://github.com/datvuthanh/HybridNets/raw/main/images/full_video.gif">


### Load From PyTorch Hub
### PyTorch Hub에서 불러오기

This example loads the pretrained **HybridNets** model and passes an image for inference.
이 예제는 사전 훈련된 HybridNets 모델을 불러오고 추론을 위해 이미지를 전달합니다.
```python
import torch

Expand All @@ -84,9 +84,9 @@ img = torch.randn(1,3,640,384)
features, regression, classification, anchors, segmentation = model(img)
```

### Citation
### 인용

If you find our [paper](https://arxiv.org/abs/2203.09035) and [code](https://github.com/datvuthanh/HybridNets) useful for your research, please consider giving a star and citation:
본 [논문](https://arxiv.org/abs/2203.09035) 과 [코드](https://github.com/datvuthanh/HybridNets) 가 여러분의 연구에 유용하다고 판단되면, GitHub star를 주는 것과 본 논문을 인용하는 것을 고려해 주세요:

```BibTeX
@misc{vu2022hybridnets,
Expand Down