Note
🆕 ShiNyP v1.1.1 is now available!
📢 ShiNyP Online Version – Trial Platform
ShiNyP is a platform designed for real-time processing, analysis, and visualization of SNP datasets.
📄Input data: Genome-wide biallelic SNP in Variant Call Format (VCF).
📊Analysis: Data QC, population genetics analysis, core collection, and more.
📋Output: Publication-ready figures, tables, analyzed data objects, and free AI-driven reports.
For detailed instructions on each feature, please visit ➡️ User Guide ⬅️
-
R: Version ≥ 4.4
ℹ️ Check your current version in R:
getRversion()
-
Bioconductor: Version ≥ 3.20
⚠️ Match your Bioconductor version with your R version (e.g., use Bioconductor 3.21 if R = 4.5).
install.packages("BiocManager")
BiocManager::install(version = "3.21") # Use the version that matches your R
BiocManager::install(c("qvalue", "SNPRelate", "ggtree", "snpStats"), force = TRUE)install.packages("remotes")
remotes::install_github("TeddYenn/ShiNyP", force = TRUE)library(ShiNyP)
ShiNyP::run_ShiNyP()Input your SNP dataset in VCF, or try the built-in demo data.
If you have 🐳 Docker installed, you can launch ShiNyP without installing R or any packages.
-
ℹ️ Verify your Docker installation:
docker --version
docker run -d -p 3838:3838 teddyenn/shinyp-platformOpen your browser and visit 👉 http://localhost:3838.
🔗 Journal Article: https://doi.org/10.1093/molbev/msaf117
🔗 User Manual: https://teddyenn.github.io/ShiNyP-guide
🔗 Demo Datasets: https://github.com/TeddYenn/ShiNyP_Test/tree/main/inst/demo_data
🔗 ShiNyP Outputs (Demo): https://zenodo.org/records/14813628
🔗 Online Platform (Trial): https://teddyhuang.shinyapps.io/ShiNyP_Demo/
🔗 Docker Image: https://hub.docker.com/r/teddyenn/shinyp-platform/tags
🔗 GitHub Repository: https://github.com/TeddYenn/ShiNyP
If you use ShiNyP in your research, please cite:
Huang, Y.-H., Chen, L.-Y., Septiningsih E. M., Kao, P.-H., Kao, C.-F. (2025) ShiNyP: Unlocking SNP-Based Population Genetics—An AI-Assisted Platform for Rapid and Interactive Visual Exploration. Molecular Biology and Evolution, 42(6), msaf117. https://doi.org/10.1093/molbev/msaf117
In addition, please acknowledge the R packages utilized in your analysis. The relevant citations and descriptions for each module are detailed in the ShiNyP User Guide.
If you encounter any issues or have suggestions for new features, please submit a request on the GitHub Issues page or email us at: teddyhuangyh@gmail.com
- Aug 2024: Initial release alpha version.
- Oct 2024: Release v0.1.0.
- Feb 2025: Release v0.1.1.
- Apr 2025: Release v0.2.0.
- May 2025: Release v1.0.0.
- Jun 2025: Release v1.1.0.
