Skip to content

πŸ“Š As people learn data-science. We put up this very small projects involving basics of Data-science / analysis, facilitating the learning process for the learner. Feel free to make yourself comfortable

License

Notifications You must be signed in to change notification settings

TheHashiramaSenju/DataScienceMiniProjects

Repository files navigation

Data Science Mini Projects πŸ§ πŸ“Š

GitHub stars GitHub forks GitHub issues Contributors License: MIT Repo size


Table of Contents


Overview

This repository hosts a collection of Supervised and Unsupervised Learning mini-projects, each organized into:

  • Concepts (concepts.md) – Core explanations
  • Intricacies (intricacies.md) – Deep-dive technical details
  • Implementation (<Concept>.py) – Python code

Use this as an educational reference or a starting point for your own data-science workflows.


Directory Structure

Below is the fully expanded tree under Datascience/. Every method has its own subfolder with three files:
concepts.md, intricacies.md, and <MethodName>.py.

Datascience/
β”œβ”€β”€ SupervisedLearning/
β”‚   β”œβ”€β”€ Regression/
β”‚   β”‚   β”œβ”€β”€ LinearRegression/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── LinearRegression.py
β”‚   β”‚   β”œβ”€β”€ LogisticRegression/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── LogisticRegression.py
β”‚   β”‚   β”œβ”€β”€ RidgeRegression/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── RidgeRegression.py
β”‚   β”‚   β”œβ”€β”€ LassoRegression/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── LassoRegression.py
β”‚   β”‚   └── PolynomialRegression/
β”‚   β”‚       β”œβ”€β”€ concepts.md
β”‚   β”‚       β”œβ”€β”€ intricacies.md
β”‚   β”‚       └── PolynomialRegression.py
β”‚   β”œβ”€β”€ Classification/
β”‚   β”‚   β”œβ”€β”€ DecisionTrees/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── DecisionTrees.py
β”‚   β”‚   β”œβ”€β”€ RandomForest/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── RandomForest.py
β”‚   β”‚   β”œβ”€β”€ SupportVectorMachines/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── SupportVectorMachines.py
β”‚   β”‚   └── NaiveBayes/
β”‚   β”‚       β”œβ”€β”€ concepts.md
β”‚   β”‚       β”œβ”€β”€ intricacies.md
β”‚   β”‚       └── NaiveBayes.py
β”‚   └── NeuralNetworks/
β”‚       β”œβ”€β”€ Perceptron/
β”‚       β”‚   β”œβ”€β”€ concepts.md
β”‚       β”‚   β”œβ”€β”€ intricacies.md
β”‚       β”‚   └── Perceptron.py
β”‚       β”œβ”€β”€ ConvolutionalNeuralNetworks/
β”‚       β”‚   β”œβ”€β”€ concepts.md
β”‚       β”‚   β”œβ”€β”€ intricacies.md
β”‚       β”‚   └── ConvolutionalNeuralNetworks.py
β”‚       └── RecurrentNeuralNetworks/
β”‚           β”œβ”€β”€ concepts.md
β”‚           β”œβ”€β”€ intricacies.md
β”‚           └── RecurrentNeuralNetworks.py
β”œβ”€β”€ UnsupervisedLearning/
β”‚   β”œβ”€β”€ Clustering/
β”‚   β”‚   β”œβ”€β”€ KMeans/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── KMeans.py
β”‚   β”‚   β”œβ”€β”€ HierarchicalClustering/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── HierarchicalClustering.py
β”‚   β”‚   └── DBSCAN/
β”‚   β”‚       β”œβ”€β”€ concepts.md
β”‚   β”‚       β”œβ”€β”€ intricacies.md
β”‚   β”‚       └── DBSCAN.py
β”‚   β”œβ”€β”€ DimensionalityReduction/
β”‚   β”‚   β”œβ”€β”€ PrincipalComponentAnalysis/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── PrincipalComponentAnalysis.py
β”‚   β”‚   └── SingularValueDecomposition/
β”‚   β”‚       β”œβ”€β”€ concepts.md
β”‚   β”‚       β”œβ”€β”€ intricacies.md
β”‚   β”‚       └── SingularValueDecomposition.py
β”‚   β”œβ”€β”€ AnomalyDetection/
β”‚   β”‚   β”œβ”€β”€ IsolationForest/
β”‚   β”‚   β”‚   β”œβ”€β”€ concepts.md
β”‚   β”‚   β”‚   β”œβ”€β”€ intricacies.md
β”‚   β”‚   β”‚   └── IsolationForest.py
β”‚   β”‚   └── LocalOutlierFactor/
β”‚   β”‚       β”œβ”€β”€ concepts.md
β”‚   β”‚       β”œβ”€β”€ intricacies.md
β”‚   β”‚       └── LocalOutlierFactor.py
β”‚   └── AssociationRules/
β”‚       β”œβ”€β”€ Apriori/
β”‚       β”‚   β”œβ”€β”€ concepts.md
β”‚       β”‚   β”œβ”€β”€ intricacies.md
β”‚       β”‚   └── Apriori.py
β”‚       └── Eclat/
β”‚           β”œβ”€β”€ concepts.md
β”‚           β”œβ”€β”€ intricacies.md
β”‚           └── Eclat.py
└── struct.sh

About

πŸ“Š As people learn data-science. We put up this very small projects involving basics of Data-science / analysis, facilitating the learning process for the learner. Feel free to make yourself comfortable

Topics

Resources

License

Stars

Watchers

Forks