Skip to content

Commit 1ce5a0c

Browse files
authored
Filters on posets (#1566)
Not related to the real numbers work I'm doing -- not directly -- just something that caught my interest.
1 parent 32ba99d commit 1ce5a0c

File tree

3 files changed

+87
-2
lines changed

3 files changed

+87
-2
lines changed

src/order-theory.lagda.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,7 @@ open import order-theory.dependent-products-large-posets public
3636
open import order-theory.dependent-products-large-preorders public
3737
open import order-theory.dependent-products-large-suplattices public
3838
open import order-theory.distributive-lattices public
39+
open import order-theory.filters-posets public
3940
open import order-theory.finite-coverings-locales public
4041
open import order-theory.finite-posets public
4142
open import order-theory.finite-preorders public
Lines changed: 83 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,83 @@
1+
# Filters on posets
2+
3+
```agda
4+
module order-theory.filters-posets where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import foundation.conjunction
11+
open import foundation.dependent-pair-types
12+
open import foundation.existential-quantification
13+
open import foundation.inhabited-subtypes
14+
open import foundation.propositions
15+
open import foundation.subtypes
16+
open import foundation.universe-levels
17+
18+
open import order-theory.lower-bounds-posets
19+
open import order-theory.posets
20+
open import order-theory.subposets
21+
```
22+
23+
</details>
24+
25+
## Idea
26+
27+
A {{#concept "filter" WDID=Q1052692 WD="filter" Agda=Filter-Poset}} of a
28+
[poset](order-theory.posets.md) `P` is a [subposet](order-theory.subposets.md)
29+
`F` of `P` with the following properties:
30+
31+
- [Inhabitedness](foundation.inhabited-subtypes.md): `F` is inhabited.
32+
- Downward directedness: any two elements of `F` have a
33+
[lower bound](order-theory.lower-bounds-posets.md) in `F`.
34+
- Upward closure: if `x ∈ F`, `p ∈ P`, and `x ≤ p`, then `p ∈ F`.
35+
36+
## Definition
37+
38+
```agda
39+
module _
40+
{l1 l2 l3 : Level} (P : Poset l1 l2) (F : Subposet l3 P)
41+
where
42+
43+
is-downward-directed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
44+
is-downward-directed-prop-Subposet =
45+
Π-Prop
46+
( type-Subposet P F)
47+
( λ x →
48+
Π-Prop
49+
( type-Subposet P F)
50+
( λ y →
51+
∃ ( type-Subposet P F)
52+
( is-binary-lower-bound-Poset-Prop (poset-Subposet P F) x y)))
53+
54+
is-downward-directed-Subposet : UU (l1 ⊔ l2 ⊔ l3)
55+
is-downward-directed-Subposet = type-Prop is-downward-directed-prop-Subposet
56+
57+
is-upward-closed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
58+
is-upward-closed-prop-Subposet =
59+
Π-Prop
60+
( type-Subposet P F)
61+
( λ (x , x∈F) → leq-prop-subtype (leq-prop-Poset P x) F)
62+
63+
is-upward-closed-Subposet : UU (l1 ⊔ l2 ⊔ l3)
64+
is-upward-closed-Subposet = type-Prop is-upward-closed-prop-Subposet
65+
66+
is-filter-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
67+
is-filter-prop-Subposet =
68+
is-inhabited-subtype-Prop F ∧ is-downward-directed-prop-Subposet ∧
69+
is-upward-closed-prop-Subposet
70+
71+
is-filter-Subposet : UU (l1 ⊔ l2 ⊔ l3)
72+
is-filter-Subposet = type-Prop is-filter-prop-Subposet
73+
74+
Filter-Poset :
75+
{l1 l2 : Level} → (l : Level) → Poset l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l)
76+
Filter-Poset l P = type-subtype (is-filter-prop-Subposet {l3 = l} P)
77+
```
78+
79+
## External links
80+
81+
- [Filter (mathematics)](<https://en.wikipedia.org/wiki/Filter_(mathematics)>)
82+
at Wikipedia
83+
- [filter](https://ncatlab.org/nlab/show/filter) at $n$Lab

src/order-theory/subposets.lagda.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,9 @@ open import order-theory.subpreorders
2222

2323
## Idea
2424

25-
A **subposet** of a poset `P` is a subtype of `P`. By restriction of the
26-
ordering on `P`, subposets have again the structure of a poset.
25+
A {{#concept "subposet" Agda=Subposet}} of a [poset](order-theory.posets.md) `P`
26+
is a [subtype](foundation.subtypes.md) of `P`. By restriction of the ordering on
27+
`P`, subposets have again the structure of a poset.
2728

2829
## Definitions
2930

0 commit comments

Comments
 (0)