Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions src/metric-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,9 @@ open import metric-spaces.limits-of-sequences-metric-spaces public
open import metric-spaces.lipschitz-functions-metric-spaces public
open import metric-spaces.locally-constant-functions-metric-spaces public
open import metric-spaces.located-metric-spaces public
open import metric-spaces.metric-pseudocompletion-of-metric-spaces public
open import metric-spaces.metric-pseudocompletion-of-pseudometric-spaces public
open import metric-spaces.metric-quotients-of-pseudometric-spaces public
open import metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces public
open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces public
open import metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces public
Expand All @@ -112,6 +115,8 @@ open import metric-spaces.precategory-of-metric-spaces-and-functions public
open import metric-spaces.precategory-of-metric-spaces-and-isometries public
open import metric-spaces.precategory-of-metric-spaces-and-short-functions public
open import metric-spaces.preimages-rational-neighborhood-relations public
open import metric-spaces.pseudometric-completion-of-metric-spaces public
open import metric-spaces.pseudometric-completion-of-pseudometric-spaces public
open import metric-spaces.pseudometric-spaces public
open import metric-spaces.rational-approximations-of-zero public
open import metric-spaces.rational-cauchy-approximations public
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -90,8 +90,8 @@ module _
( metric-space-Complete-Metric-Space M)
( x)
has-limit-cauchy-sequence-Complete-Metric-Space =
limit-cauchy-sequence-Complete-Metric-Space ,
is-limit-limit-cauchy-sequence-Complete-Metric-Space
( limit-cauchy-sequence-Complete-Metric-Space ,
is-limit-limit-cauchy-sequence-Complete-Metric-Space)
```

### If every Cauchy sequence has a limit in a metric space, the metric space is complete
Expand Down Expand Up @@ -123,5 +123,5 @@ module _
complete-metric-space-cauchy-sequences-have-limits-Metric-Space :
Complete-Metric-Space l1 l2
complete-metric-space-cauchy-sequences-have-limits-Metric-Space =
M , is-complete-metric-space-cauchy-sequences-have-limits-Metric-Space
( M , is-complete-metric-space-cauchy-sequences-have-limits-Metric-Space)
```
60 changes: 57 additions & 3 deletions src/metric-spaces/complete-metric-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,12 @@ open import elementary-number-theory.positive-rational-numbers
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.retractions
open import foundation.retracts-of-types
open import foundation.sections
open import foundation.subtypes
open import foundation.universe-levels
Expand All @@ -23,6 +26,7 @@ open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.pseudometric-spaces
```

</details>
Expand Down Expand Up @@ -80,6 +84,10 @@ module _
metric-space-Complete-Metric-Space : Metric-Space l1 l2
metric-space-Complete-Metric-Space = pr1 A

pseudometric-space-Complete-Metric-Space : Pseudometric-Space l1 l2
pseudometric-space-Complete-Metric-Space =
pseudometric-Metric-Space metric-space-Complete-Metric-Space

type-Complete-Metric-Space : UU l1
type-Complete-Metric-Space =
type-Metric-Space metric-space-Complete-Metric-Space
Expand Down Expand Up @@ -122,13 +130,13 @@ module _
( metric-space-Complete-Metric-Space A))
( refl)

is-retraction-convergent-cauchy-approximation-Metric-Space :
is-retraction-convergent-cauchy-approximation-Complete-Metric-Space :
is-retraction
( convergent-cauchy-approximation-Complete-Metric-Space)
( inclusion-subtype
( is-convergent-prop-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)))
is-retraction-convergent-cauchy-approximation-Metric-Space u = refl
is-retraction-convergent-cauchy-approximation-Complete-Metric-Space u = refl

is-equiv-convergent-cauchy-approximation-Complete-Metric-Space :
is-equiv convergent-cauchy-approximation-Complete-Metric-Space
Expand All @@ -141,7 +149,7 @@ module _
( inclusion-subtype
( is-convergent-prop-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A))) ,
( is-retraction-convergent-cauchy-approximation-Metric-Space)
( is-retraction-convergent-cauchy-approximation-Complete-Metric-Space)
```

### The limit of a Cauchy approximation in a complete metric space
Expand Down Expand Up @@ -172,6 +180,52 @@ module _
( convergent-cauchy-approximation-Complete-Metric-Space A u)
```

### Any complete metric space is a retract of its type of Cauchy approximations

```agda
module _
{l1 l2 : Level} (A : Complete-Metric-Space l1 l2)
where

abstract
is-retraction-limit-cauchy-approximation-Complete-Metric-Space :
( limit-cauchy-approximation-Complete-Metric-Space A ∘
const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)) ~
( id)
is-retraction-limit-cauchy-approximation-Complete-Metric-Space x =
all-eq-is-limit-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)
( const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)
( x))
( limit-cauchy-approximation-Complete-Metric-Space
( A)
( const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)
( x)))
( x)
( is-limit-limit-cauchy-approximation-Complete-Metric-Space
( A)
( const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)
( x)))
( is-limit-const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)
( x))

retract-limit-cauchy-approximation-Complete-Metric-Space :
retract
( cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A))
( type-Complete-Metric-Space A)
retract-limit-cauchy-approximation-Complete-Metric-Space =
( ( const-cauchy-approximation-Metric-Space
( metric-space-Complete-Metric-Space A)) ,
( limit-cauchy-approximation-Complete-Metric-Space A) ,
( is-retraction-limit-cauchy-approximation-Complete-Metric-Space))
```

### Saturation of the limit

```agda
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,10 @@ open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.retracts-of-types
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels
Expand Down Expand Up @@ -140,3 +142,51 @@ module _
( limit-convergent-cauchy-approximation-Metric-Space)
is-limit-limit-convergent-cauchy-approximation-Metric-Space = pr2 (pr2 f)
```

## Properties

### Constant Cauchy approximations are convergent

```agda
module _
{l1 l2 : Level} (A : Metric-Space l1 l2)
(x : type-Metric-Space A)
where

is-convergent-const-cauchy-approximation-Metric-Space :
is-convergent-cauchy-approximation-Metric-Space
( A)
( const-cauchy-approximation-Metric-Space A x)
is-convergent-const-cauchy-approximation-Metric-Space =
( x , is-limit-const-cauchy-approximation-Metric-Space A x)

convergent-const-cauchy-approximation-Metric-Space :
convergent-cauchy-approximation-Metric-Space A
convergent-const-cauchy-approximation-Metric-Space =
( const-cauchy-approximation-Metric-Space A x ,
is-convergent-const-cauchy-approximation-Metric-Space)
```

### Any metric space is a retract of its type of convergent Cauchy approximations

```agda
module _
{l1 l2 : Level} (A : Metric-Space l1 l2)
where

abstract
is-retraction-convergent-cauchy-approximation-Metric-Space :
( limit-convergent-cauchy-approximation-Metric-Space A ∘
convergent-const-cauchy-approximation-Metric-Space A) ~
( id)
is-retraction-convergent-cauchy-approximation-Metric-Space x = refl

retract-convergent-cauchy-approximation-Metric-Space :
retract
( convergent-cauchy-approximation-Metric-Space A)
( type-Metric-Space A)
retract-convergent-cauchy-approximation-Metric-Space =
( convergent-const-cauchy-approximation-Metric-Space A ,
limit-convergent-cauchy-approximation-Metric-Space A ,
is-retraction-convergent-cauchy-approximation-Metric-Space)
```
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,25 @@ module _
( all-sim-is-limit-cauchy-approximation-Metric-Space lim-x lim-y)
```

### The value of a constant Cauchy approximation is its limit

```agda
module _
{l1 l2 : Level} (A : Metric-Space l1 l2)
(x : type-Metric-Space A)
where

is-limit-const-cauchy-approximation-Metric-Space :
is-limit-cauchy-approximation-Metric-Space
( A)
( const-cauchy-approximation-Metric-Space A x)
( x)
is-limit-const-cauchy-approximation-Metric-Space =
is-limit-const-cauchy-approximation-Pseudometric-Space
( pseudometric-Metric-Space A)
( x)
```

## See also

- [Convergent cauchy approximations](metric-spaces.convergent-cauchy-approximations-metric-spaces.md)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,23 @@ module _
( Nxy)
```

### The value of a constant Cauchy approximation is its limit

```agda
module _
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
(x : type-Pseudometric-Space A)
where

is-limit-const-cauchy-approximation-Pseudometric-Space :
is-limit-cauchy-approximation-Pseudometric-Space
( A)
( const-cauchy-approximation-Pseudometric-Space A x)
( x)
is-limit-const-cauchy-approximation-Pseudometric-Space ε δ =
refl-neighborhood-Pseudometric-Space A _ x
```

## References

Our definition of limit of Cauchy approximation follows Definition 11.2.10 of
Expand Down
Loading