Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
43 commits
Select commit Hold shift + click to select a range
01ea45b
renaming polynomial endofunctors
fredrik-bakke Aug 30, 2025
7a75548
natural transformations of polynomial endofunctors
fredrik-bakke Aug 30, 2025
57afb14
edits natural transformations
fredrik-bakke Aug 31, 2025
43be928
define morphisms of polynomial endofunctors
fredrik-bakke Aug 31, 2025
f8304fe
define cartesian natural transformations of polynomial endofunctors
fredrik-bakke Aug 31, 2025
5ec4c58
work
fredrik-bakke Aug 31, 2025
4683b4b
work cart poly fun
fredrik-bakke Sep 1, 2025
971f47b
Merge branch 'master' into more-polynomial-functors
fredrik-bakke Sep 1, 2025
2bce3f4
edit
fredrik-bakke Sep 1, 2025
3703bc1
fix references that should be citations in `coherently-idempotent-maps`
fredrik-bakke Sep 2, 2025
1ee4e3e
fiber computations
fredrik-bakke Sep 13, 2025
330bf02
Cartesian morphisms are cartesian natural transformations
fredrik-bakke Sep 13, 2025
b159965
the underlying global subuniverse of a univalent type family
fredrik-bakke Sep 13, 2025
7fbc0f8
univalent polynomial endofunctors
fredrik-bakke Sep 13, 2025
7db5572
The indexing type of a univalent type family is equivalent to the sub…
fredrik-bakke Sep 13, 2025
601be76
shorten to `univalent-family`
fredrik-bakke Sep 13, 2025
cc7c9c5
add some "see also"s
fredrik-bakke Sep 13, 2025
54c4cad
edits
fredrik-bakke Sep 13, 2025
f462576
more pullback pasting properties!
fredrik-bakke Sep 15, 2025
5b4c5bf
edits
fredrik-bakke Sep 15, 2025
6d60ca9
add reference for equivalence between cartesian morphisms and cartesi…
fredrik-bakke Sep 15, 2025
42e5612
uniqueness of lifts cartesian morphisms of arrows
fredrik-bakke Sep 15, 2025
fb0dab7
a comment
fredrik-bakke Sep 15, 2025
55e0caa
lifts of morphisms of arrows
fredrik-bakke Sep 15, 2025
881c911
wip universal property cartesian morphisms
fredrik-bakke Sep 15, 2025
702071c
some parentheses
fredrik-bakke Sep 15, 2025
f31bed5
save some space
fredrik-bakke Sep 16, 2025
8138263
`compute-fiber-lift-codomain-lift-hom-arrow`
fredrik-bakke Sep 16, 2025
f8a2df6
equivalence between up-cartesian, having unique lifts, and cartesianness
fredrik-bakke Sep 16, 2025
daeb23c
remove cringe `equiv-tr`s
fredrik-bakke Sep 16, 2025
8c7faae
edits
fredrik-bakke Sep 16, 2025
c96f223
delete some stuff
fredrik-bakke Sep 16, 2025
0b1130d
singluar `shape` and `position`
fredrik-bakke Sep 16, 2025
1c9f007
casing
fredrik-bakke Sep 16, 2025
19ef900
random edits
fredrik-bakke Sep 19, 2025
e03d7f7
fix `WDID` in `left-modules-rings`
fredrik-bakke Sep 19, 2025
055567e
edits
fredrik-bakke Sep 19, 2025
537a135
A natural transformation into a polynomial endofunctor with a set of …
fredrik-bakke Sep 20, 2025
55e796e
fix another naming
fredrik-bakke Sep 20, 2025
9f421a3
Merge branch 'master' into more-polynomial-functors
fredrik-bakke Sep 20, 2025
ed04aa0
pre-commit
fredrik-bakke Sep 20, 2025
d0bfc8c
edits
fredrik-bakke Sep 20, 2025
1012356
edits
fredrik-bakke Sep 20, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -506,9 +506,23 @@ @online{GGMS24
keywords = {Computer Science - Logic in Computer Science,Mathematics - Logic},
}

@article{GHK22,
title = {∞-Operads as Analytic Monads},
author = {Gepner, David and Haugseng, Rune and Kock, Joachim},
year = 2021,
month = {04},
journal = {International Mathematics Research Notices},
volume = 2022,
number = 16,
pages = {12516--12624},
doi = {10.1093/imrn/rnaa332},
issn = {1073-7928},
eprint = {https://academic.oup.com/imrn/article-pdf/2022/16/12516/45280093/rnaa332.pdf},
}

@article{GK12,
title = {Polynomial functors and polynomial monads},
author = {GAMBINO, NICOLA and KOCK, JOACHIM},
author = {Gambino, Nicola and Kock, Joachim},
year = 2012,
month = sep,
journal = {Mathematical Proceedings of the Cambridge Philosophical Society},
Expand Down
56 changes: 39 additions & 17 deletions src/foundation-core/functoriality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,8 +55,7 @@ Any family of maps induces a map on the total spaces.

```agda
tot : Σ A B → Σ A C
pr1 (tot t) = pr1 t
pr2 (tot t) = f (pr1 t) (pr2 t)
tot t = (pr1 t , f (pr1 t) (pr2 t))
```

### Any map `f : A → B` induces a map `Σ A (C ∘ f) → Σ B C`
Expand All @@ -67,8 +66,7 @@ module _
where

map-Σ-map-base : Σ A (λ x → C (f x)) → Σ B C
pr1 (map-Σ-map-base s) = f (pr1 s)
pr2 (map-Σ-map-base s) = pr2 s
map-Σ-map-base s = (f (pr1 s) , pr2 s)
```

### The functorial action of dependent pair types, and its defining homotopy
Expand All @@ -79,10 +77,8 @@ module _
(D : B → UU l4)
where

map-Σ :
(f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D
pr1 (map-Σ f g t) = f (pr1 t)
pr2 (map-Σ f g t) = g (pr1 t) (pr2 t)
map-Σ : (f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D
map-Σ f g t = (f (pr1 t) , g (pr1 t) (pr2 t))

triangle-map-Σ :
(f : A → B) (g : (x : A) → C x → D (f x)) →
Expand Down Expand Up @@ -123,7 +119,7 @@ tot-htpy H (pair x y) = eq-pair-eq-fiber (H x y)
tot-id :
{l1 l2 : Level} {A : UU l1} (B : A → UU l2) →
(tot (λ x (y : B x) → y)) ~ id
tot-id B (pair x y) = refl
tot-id B p = refl
```

### The map `tot` preserves composition
Expand All @@ -134,7 +130,7 @@ preserves-comp-tot :
{A : UU l1} {B : A → UU l2} {B' : A → UU l3} {B'' : A → UU l4}
(f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) →
tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f))
preserves-comp-tot f g (pair x y) = refl
preserves-comp-tot f g p = refl
```

### The fibers of `tot`
Expand Down Expand Up @@ -414,7 +410,8 @@ module _
equiv-Σ-equiv-base :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (e : A ≃ B) →
Σ A (C ∘ map-equiv e) ≃ Σ B C
pr1 (equiv-Σ-equiv-base C (pair f is-equiv-f)) = map-Σ-map-base f C
pr1 (equiv-Σ-equiv-base C (pair f is-equiv-f)) =
map-Σ-map-base f C
pr2 (equiv-Σ-equiv-base C (pair f is-equiv-f)) =
is-equiv-map-Σ-map-base f C is-equiv-f
```
Expand Down Expand Up @@ -477,13 +474,13 @@ module _

fiber-triangle :
(x : X) → fiber f x → fiber g x
pr1 (fiber-triangle .(f a) (pair a refl)) = h a
pr2 (fiber-triangle .(f a) (pair a refl)) = inv (H a)
pr1 (fiber-triangle .(f a) (a , refl)) = h a
pr2 (fiber-triangle .(f a) (a , refl)) = inv (H a)

square-tot-fiber-triangle :
( h ∘ map-equiv-total-fiber f) ~
( map-equiv-total-fiber g ∘ tot fiber-triangle)
square-tot-fiber-triangle (pair .(f a) (pair a refl)) = refl
square-tot-fiber-triangle (.(f a) , a , refl) = refl
```

### In a commuting triangle, the top map is an equivalence if and only if it induces an equivalence on fibers
Expand Down Expand Up @@ -560,10 +557,35 @@ module _
(g : (a : A) → X a → Y a) {a a' : A} {x : X a} {x' : X a'}
where

compute-ap-tot :
coh-ap-tot :
pair-eq-Σ ∘ ap (tot g) {a , x} {a' , x'} ~
tot (λ p q → inv (preserves-tr g p x) ∙ ap (g a') q) ∘ pair-eq-Σ
compute-ap-tot refl = refl
tot (λ p q → inv-preserves-tr g p x ∙ ap (g a') q) ∘ pair-eq-Σ
coh-ap-tot refl = refl

compute-ap-tot :
(p : a = a') →
(q : dependent-identification X p x x') →
ap (tot g) {a , x} {a' , x'} (eq-pair-Σ p q) =
eq-pair-Σ p (inv-preserves-tr g p x ∙ ap (g a') q)
compute-ap-tot refl refl = refl

compute-ap-tot' :
(p : (a , x) = (a' , x')) →
ap (tot g) {a , x} {a' , x'} p =
eq-pair-Σ
( ap pr1 p)
( inv-preserves-tr g (ap pr1 p) x ∙
ap (g a') (tr-ap pr1 (λ x _ → pr2 x) p a))
compute-ap-tot' refl = refl

inv-compute-ap-tot' :
(p : (a , x) = (a' , x')) →
eq-pair-Σ
( ap pr1 p)
( inv-preserves-tr g (ap pr1 p) x ∙
ap (g a') (tr-ap pr1 (λ x _ → pr2 x) p a)) =
ap (tot g) {a , x} {a' , x'} p
inv-compute-ap-tot' p = inv (compute-ap-tot' p)
```

### Computing the action on identifications of the functorial action of Σ
Expand Down
Loading