Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/order-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ open import order-theory.dependent-products-large-posets public
open import order-theory.dependent-products-large-preorders public
open import order-theory.dependent-products-large-suplattices public
open import order-theory.distributive-lattices public
open import order-theory.filters-posets public
open import order-theory.finite-coverings-locales public
open import order-theory.finite-posets public
open import order-theory.finite-preorders public
Expand Down
83 changes: 83 additions & 0 deletions src/order-theory/filters-posets.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Filters on posets

```agda
module order-theory.filters-posets where
```

<details><summary>Imports</summary>

```agda
open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.inhabited-subtypes
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.lower-bounds-posets
open import order-theory.posets
open import order-theory.subposets
```

</details>

## Idea

A {{#concept "filter" WDID=Q1052692 WD="filter" Agda=Filter-Poset}} of a
[poset](order-theory.posets.md) `P` is a [subposet](order-theory.subposets.md)
`F` of `P` with the following properties:

- [Inhabitedness](foundation.inhabited-subtypes.md): `F` is inhabited.
- Downward directedness: any two elements of `F` have a
[lower bound](order-theory.lower-bounds-posets.md) in `F`.
- Upward closure: if `x ∈ F`, `p ∈ P`, and `x ≤ p`, then `p ∈ F`.

## Definition

```agda
module _
{l1 l2 l3 : Level} (P : Poset l1 l2) (F : Subposet l3 P)
where

is-downward-directed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
is-downward-directed-prop-Subposet =
Π-Prop
( type-Subposet P F)
( λ x →
Π-Prop
( type-Subposet P F)
( λ y →
∃ ( type-Subposet P F)
( is-binary-lower-bound-Poset-Prop (poset-Subposet P F) x y)))

is-downward-directed-Subposet : UU (l1 ⊔ l2 ⊔ l3)
is-downward-directed-Subposet = type-Prop is-downward-directed-prop-Subposet

is-upward-closed-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
is-upward-closed-prop-Subposet =
Π-Prop
( type-Subposet P F)
( λ (x , x∈F) → leq-prop-subtype (leq-prop-Poset P x) F)

is-upward-closed-Subposet : UU (l1 ⊔ l2 ⊔ l3)
is-upward-closed-Subposet = type-Prop is-upward-closed-prop-Subposet

is-filter-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3)
is-filter-prop-Subposet =
is-inhabited-subtype-Prop F ∧ is-downward-directed-prop-Subposet ∧
is-upward-closed-prop-Subposet

is-filter-Subposet : UU (l1 ⊔ l2 ⊔ l3)
is-filter-Subposet = type-Prop is-filter-prop-Subposet

Filter-Poset :
{l1 l2 : Level} → (l : Level) → Poset l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l)
Filter-Poset l P = type-subtype (is-filter-prop-Subposet {l3 = l} P)
```

## External links

- [Filter (mathematics)](<https://en.wikipedia.org/wiki/Filter_(mathematics)>)
at Wikipedia
- [filter](https://ncatlab.org/nlab/show/filter) at $n$Lab
5 changes: 3 additions & 2 deletions src/order-theory/subposets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,9 @@ open import order-theory.subpreorders

## Idea

A **subposet** of a poset `P` is a subtype of `P`. By restriction of the
ordering on `P`, subposets have again the structure of a poset.
A {{#concept "subposet" Agda=Subposet}} of a [poset](order-theory.posets.md) `P`
is a [subtype](foundation.subtypes.md) of `P`. By restriction of the ordering on
`P`, subposets have again the structure of a poset.

## Definitions

Expand Down