Skip to content

Commit 69c2d1e

Browse files
committed
Updated the HeisChain example
1 parent e8d4581 commit 69c2d1e

File tree

4 files changed

+72
-72
lines changed

4 files changed

+72
-72
lines changed
-6 KB
Loading
6.18 KB
Loading
-394 KB
Loading

content/magnon/magnon.rst

Lines changed: 72 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ Magnon spectra and noncollinear magnetism
22
=========================================
33

44

5-
Tutorial 1: bcc Fe at different temperature
5+
Exercise 1: bcc Fe at different temperature
66
------------------------------------------------
77

88
Collinear magnon spectra and influence of uniaxial anisotropy
@@ -13,7 +13,7 @@ This example shows how to calculate the spin wave spectrum of the standard examp
1313
Crystal & magnetic structure
1414
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1515

16-
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of a Fe bcc system is set up.
16+
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of an Fe bcc system is set up.
1717

1818
::
1919

@@ -58,15 +58,15 @@ Below the critical temperature bcc Fe has long range collinear ordering of spins
5858
qpoints D Direct coordinates
5959
qfile ./qfile.kpath q points
6060

61-
**The first Brilluoin zone of a body centered cubic lattice**
61+
**The first Brillouin zone of a body centered cubic lattice**
6262

6363
.. figure:: figures/tutorial1/fig3.png
6464

6565
Fig 3. Primitive and reciprocal lattice vectors in bcc.
6666

6767
.. figure:: figures/tutorial1/fig4.png
6868

69-
Fig 4. BCC 1st Brilluoin zone.
69+
Fig 4. BCC 1st Brillouin zone.
7070

7171
.. figure:: figures/tutorial1/fig5.png
7272

@@ -94,13 +94,13 @@ Questions and exercises:
9494

9595
Fig 7. Adiabatic magnon spectra of Fe FCC.
9696

97-
Tutorial 2: FM Heisenberg nearest-neighbour spin chain
97+
Exercise 2: FM Heisenberg nearest-neighbour spin chain
9898
------------------------------------------------------
9999

100100
Collinear adiabatic magnon spectra and S(q,w)
101101
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
102102

103-
The following tutorial shows every step necessary to calculate spin wave spectrum and S(q,w) through the simple example of the ferromagnetic spin chain. Notice that the classical magnetic ground state of the Hamiltonian defined in this example is where every spin have the same direction, the direction is arbitrary since the Hamiltonian is isotropic. Files are found in HeisChain folder.
103+
The following tutorial shows every step necessary to calculate spin wave spectrum and S(q,w) through the simple example of the ferromagnetic spin chain. Notice that the classical magnetic ground state of the Hamiltonian defined in this example is where every spin have the same direction, the direction is arbitrary since the Hamiltonian is isotropic. Files are found in ``HeisChain`` folder.
104104

105105
Crystal & magnetic structure
106106
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -112,46 +112,41 @@ Using the lines below with the indicated files, the crystal and magnetic structu
112112
ncell 1 1 100 System size (in terms of unit cells)
113113
BC 0 0 P Boundary conditions (0=vacuum,P=periodic)
114114
cell 1.00000 0.00000 0.00000
115-
0.00000 1.00000 0.00000
116-
0.00000 0.00000 1.00000
115+
0.00000 1.00000 0.00000
116+
0.00000 0.00000 1.00000
117117
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
118118

119119
posfile ./posfile Position file
120120
exchange ./jfile Exchange file
121121
momfile ./momfile Moment file
122-
do_prnstruct 1 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
122+
do_prnstruct 1 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
123+
124+
Mensemble 1 Number of samples in ensemble averaging
125+
Initmag 3 (1=random, 2=cone, 3=spec., 4=file)
123126

124127
.. figure:: figures/tutorial2/fig1.png
125128

126129
Fig 1. Crystal and magnetic texture.
127130

128-
Spin dynamics
129-
^^^^^^^^^^^^^
131+
**The first Brillouin zone of a simple cubic lattice**
130132

131-
Using the lines below, the systems is driven to the ground state by spin dynamics.
132-
::
133+
.. figure:: figures/tutorial2/fig3.png
133134

134-
Mensemble 1 Number of samples in ensemble averaging
135-
Initmag 3 (1=random, 2=cone, 3=spec., 4=file)
135+
Fig 3. Primitive and reciprocal lattice vectors in sc.
136136

137-
ip_mode S Initial phase parameters
138-
ip_nphase 1
139-
20000 1.0e-3 1e-16 4.0
137+
.. figure:: figures/tutorial2/fig4.png
140138

141-
mode S S=SD, M=MC
142-
temp 1.0e-3 Measurement phase parameters
143-
damping 0.0010 --
144-
Nstep 40000 --
145-
timestep 1.000e-15 --
139+
Fig 4. SC 1st Brillouin zone.
146140

147-
.. figure:: figures/tutorial2/fig2.png
141+
.. figure:: figures/tutorial2/fig5.png
148142

149-
Fig 2. Energy versus number of iterations.
143+
Fig 5. High symmetry points.
150144

151-
Spin wave spectrum
152-
^^^^^^^^^^^^^^^^^^
153145

154-
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra) at the list of Q points (qfile). Use qmaker script.
146+
Calculation of spin wave spectrum
147+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
148+
149+
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra) at the list of Q points contained in the ``qfile``. The spin wave spectra is calculated as excititions from the T=0 K ferromagnetic ground state.
155150

156151
::
157152

@@ -161,53 +156,58 @@ We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon
161156
qpoints F Flag for q-point generation (F=file,A=automatic,C=full cell)
162157
qfile ./qfile Path along the high symmetry points in the reciprocal space
163158

164-
**The first Brilluoin zone of a simple cubic lattice**
165-
166-
.. figure:: figures/tutorial2/fig3.png
167-
168-
Fig 3. Primitive and reciprocal lattice vectors in sc.
169159

170-
.. figure:: figures/tutorial2/fig4.png
171-
172-
Fig 4. SC 1st Brilluoin zone.
173-
174-
.. figure:: figures/tutorial2/fig5.png
175-
176-
Fig 5. High symmetry points.
177-
178-
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
179-
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
180-
181-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
160+
Spin dynamics
161+
^^^^^^^^^^^^^
182162

183-
.. figure:: figures/tutorial2/fig6.png
163+
Using the lines below, the systems is equilibrated in spin dynamics simulations to be in thermal equilibrium with a small temperature T=0.001 K.
164+
::
184165

185-
Fig 6. Adiabatic magnon spectra.
166+
ip_mode S Initial phase parameters
167+
ip_nphase 1
168+
20000 1.0e-3 1e-16 4.0
186169

187-
Plotting S(q,w)
188-
^^^^^^^^^^^^^^^
170+
.. figure:: figures/tutorial2/fig2.png
189171

190-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
172+
Fig 2. Energy versus number of iterations.
191173

174+
The dynamical structure factor is sampled in spin dynamics simulation at the same temperature T=0.001 K as used in the initial phase used to thermalize the system. The time step is 1 fs, and a small damping 0.0010 is used.
192175
::
193176

177+
mode S S=SD, M=MC
178+
temp 1.0e-3 Measurement phase parameters
179+
damping 0.0010 --
180+
Nstep 40000 --
181+
timestep 1.000e-15 --
182+
183+
do_sc Q Measure spin correlation
184+
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
194185
do_sc Q Measure spin correlation
195186
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
196187
sc_nstep 5000 Number of steps to sample
197188
sc_step 8 Number of time steps between each sampling
198189

199190

191+
Plotting adiabatic magnon spectrum spectra and the dynamic structure factor
192+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
193+
194+
Use the UppASD graphical interface (ASD_GUI) or the ``postQ.py`` script to plot the adiabatic magnon spectra and the dynamical structure factor.
195+
196+
.. figure:: figures/tutorial2/fig6.png
197+
198+
Fig 6. Adiabatic magnon spectra is output to the file ams.png.
199+
200200
.. figure:: figures/tutorial2/fig7.png
201201

202-
Fig 7. Structure factor together with AMS.
202+
Fig 7. Adiabatic magnon spectra together with dynamic structure factor is output to ams_sqw.png.
203203

204204
Questions and exercises:
205205
^^^^^^^^^^^^^^^^^^^^^^^^
206206

207207
1. Does it follows the analytical expression predicted by Linear Spin Wave Theory?
208208

209209

210-
Tutorial 3: AFM Heisenberg nearest-neighbour spin chain
210+
Exercise 3: AFM Heisenberg nearest-neighbour spin chain
211211
-------------------------------------------------------
212212

213213
Collinear adiabatic magnon spectra and S(q,w)
@@ -275,15 +275,15 @@ We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon
275275
file with direct coordinates)
276276
qfile ./qfile Path along the high symmetry points in the reciprocal space
277277

278-
**The first Brilluoin zone of a simple cubic lattice**
278+
**The first Brillouin zone of a simple cubic lattice**
279279

280280
.. figure:: figures/tutorial3/fig3.png
281281

282282
Fig 3. Primitive and reciprocal lattice vectors in sc.
283283

284284
.. figure:: figures/tutorial3/fig4.png
285285

286-
Fig 4. SC 1st Brilluoin zone.
286+
Fig 4. SC 1st Brillouin zone.
287287

288288
.. figure:: figures/tutorial3/fig5.png
289289

@@ -292,7 +292,7 @@ Fig 5. High symmetry points.
292292
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
293293
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
294294

295-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
295+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
296296

297297
1. Use only the primitive cell.
298298

@@ -309,7 +309,7 @@ Fig 7. Adiabatic magnon spectra.
309309
Plotting S(q,w)
310310
^^^^^^^^^^^^^^^
311311

312-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
312+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
313313

314314
::
315315

@@ -329,7 +329,7 @@ Questions and exercises:
329329
2. Calculate analytically the Energy/spin and show it is the same as the numerical result.
330330

331331

332-
Tutorial 4: FM Heisenberg nearest-neighbour spin chain with DM interactions
332+
Exercise 4: FM Heisenberg nearest-neighbour spin chain with DM interactions
333333
---------------------------------------------------------------------------
334334

335335
Non-Collinear adiabatic magnon spectra and S(q,w)
@@ -401,15 +401,15 @@ We calculate the non-collinear and collinear spin wave spectrum at the list of
401401
qfile ./qfile Path along the high symmetry points in the reciprocal space
402402

403403

404-
**The first Brilluoin zone of a simple cubic lattice**
404+
**The first Brillouin zone of a simple cubic lattice**
405405

406406
.. figure:: figures/tutorial4/fig3.png
407407

408408
Fig 3. Primitive and reciprocal lattice vectors in sc.
409409

410410
.. figure:: figures/tutorial4/fig4.png
411411

412-
Fig 4. SC 1st Brilluoin zone.
412+
Fig 4. SC 1st Brillouin zone.
413413

414414
.. figure:: figures/tutorial4/fig5.png
415415

@@ -418,7 +418,7 @@ Fig 5. High symmetry points.
418418
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
419419
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
420420

421-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
421+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
422422

423423
1. Collinear AMS
424424

@@ -435,7 +435,7 @@ Fig 7. Non-collinear Adiabatic magnon spectra.
435435
Plotting S(q,w)
436436
^^^^^^^^^^^^^^^
437437

438-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS and option 5 S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
438+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS and option 5 S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
439439

440440
::
441441

@@ -454,7 +454,7 @@ Questions and exercises:
454454

455455

456456

457-
Tutorial 5: Kagome system with DM interactions
457+
Exercise 5: Kagome system with DM interactions
458458
----------------------------------------------
459459

460460
Non-Collinear adiabatic magnon spectra and S(q,w)
@@ -522,16 +522,16 @@ We calculate the non-collinear spin wave spectrum (in this case, a collinear adi
522522
file with direct coordinates)
523523
qfile ./qfile Path along the high symmetry points in the reciprocal space
524524

525-
**The first Brilluoin zone of a hexagonal lattice**
525+
**The first Brillouin zone of a hexagonal lattice**
526526

527527
.. figure:: figures/tutorial5/fig2.png
528528

529-
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brilluoin zone and High symmetry points.
529+
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brillouin zone and High symmetry points.
530530

531531
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
532532
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
533533

534-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 4. File to print out “ncams.kagome_T.out”.
534+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 4. File to print out “ncams.kagome_T.out”.
535535

536536
.. figure:: figures/tutorial5/fig3.png
537537

@@ -540,7 +540,7 @@ Fig 3. Non-Collinear AMS.
540540
Plotting S(q,w)
541541
^^^^^^^^^^^^^^^
542542

543-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS. File to print out “ncams.kagome_T.out” and “sqw.kagome_T.out”.
543+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS. File to print out “ncams.kagome_T.out” and “sqw.kagome_T.out”.
544544

545545
::
546546

@@ -568,7 +568,7 @@ Questions and exercises:
568568
2. Seems linear around Gamma point but J is FM? Why is that? Shouldn´t be parabolic?
569569

570570

571-
Tutorial 6: Triangular system with AFM interactions
571+
Exercise 6: Triangular system with AFM interactions
572572
---------------------------------------------------
573573

574574
Non-Collinear adiabatic magnon spectra and S(q,w)
@@ -650,16 +650,16 @@ We calculate the non-collinear spin wave spectrum (in this case, a collinear adi
650650
qm_nvec 0 0 1 Unit-vector perpendicular to spins
651651
qm_svec 0 1 0 Direction of the spin
652652

653-
**The first Brilluoin zone of a hexagonal lattice**
653+
**The first Brillouin zone of a hexagonal lattice**
654654

655655
.. figure:: figures/tutorial6/fig2.png
656656

657-
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brilluoin zone and High symmetry points.
657+
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brillouin zone and High symmetry points.
658658

659659
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
660660
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
661661

662-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 7. File to print out “ncams.kagome_T.out”, “ncams+q.triang_T.out” and “ncams-q.triang_T.out”
662+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 7. File to print out “ncams.kagome_T.out”, “ncams+q.triang_T.out” and “ncams-q.triang_T.out”
663663

664664
.. figure:: figures/tutorial6/fig3.png
665665

@@ -668,7 +668,7 @@ Fig 3. Non-Collinear AMS.
668668
Plotting S(q,w)
669669
^^^^^^^^^^^^^^^
670670

671-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 6 for S(q,w) with NC_AMS+Q. File to print out “ncams.kagome_T.out”, “sqw.kagome_T.out”,” ncams+q.triang_T.out” and “ncams-q.triang_T.out”.
671+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 6 for S(q,w) with NC_AMS+Q. File to print out “ncams.kagome_T.out”, “sqw.kagome_T.out”,” ncams+q.triang_T.out” and “ncams-q.triang_T.out”.
672672

673673
::
674674

@@ -713,7 +713,7 @@ Eq 4. Excitation energy for spin waves in an isotropic antiferromagnet.
713713
Eq 5. Excitation energy for spin waves in an isotropic ferromagnet.
714714

715715

716-
Tutorial 7: Spin wave stiffness
716+
Exercise 7: Spin wave stiffness
717717
-------------------------------
718718

719719
The spin wave stiffness and the related property exchange stiffness provides the bridge between atomistic spin dynamics and micromagnetism.

0 commit comments

Comments
 (0)