You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/magnon/magnon.rst
+72-72Lines changed: 72 additions & 72 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2,7 +2,7 @@ Magnon spectra and noncollinear magnetism
2
2
=========================================
3
3
4
4
5
-
Tutorial 1: bcc Fe at different temperature
5
+
Exercise 1: bcc Fe at different temperature
6
6
------------------------------------------------
7
7
8
8
Collinear magnon spectra and influence of uniaxial anisotropy
@@ -13,7 +13,7 @@ This example shows how to calculate the spin wave spectrum of the standard examp
13
13
Crystal & magnetic structure
14
14
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15
15
16
-
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of a Fe bcc system is set up.
16
+
Using the lines below with the indicated files, the crystal and magnetic structure are readily available, so that a simulation of an Fe bcc system is set up.
17
17
18
18
::
19
19
@@ -58,15 +58,15 @@ Below the critical temperature bcc Fe has long range collinear ordering of spins
58
58
qpoints D Direct coordinates
59
59
qfile ./qfile.kpath q points
60
60
61
-
**The first Brilluoin zone of a body centered cubic lattice**
61
+
**The first Brillouin zone of a body centered cubic lattice**
62
62
63
63
.. figure:: figures/tutorial1/fig3.png
64
64
65
65
Fig 3. Primitive and reciprocal lattice vectors in bcc.
66
66
67
67
.. figure:: figures/tutorial1/fig4.png
68
68
69
-
Fig 4. BCC 1st Brilluoin zone.
69
+
Fig 4. BCC 1st Brillouin zone.
70
70
71
71
.. figure:: figures/tutorial1/fig5.png
72
72
@@ -94,13 +94,13 @@ Questions and exercises:
94
94
95
95
Fig 7. Adiabatic magnon spectra of Fe FCC.
96
96
97
-
Tutorial 2: FM Heisenberg nearest-neighbour spin chain
97
+
Exercise 2: FM Heisenberg nearest-neighbour spin chain
The following tutorial shows every step necessary to calculate spin wave spectrum and S(q,w) through the simple example of the ferromagnetic spin chain. Notice that the classical magnetic ground state of the Hamiltonian defined in this example is where every spin have the same direction, the direction is arbitrary since the Hamiltonian is isotropic. Files are found in HeisChain folder.
103
+
The following tutorial shows every step necessary to calculate spin wave spectrum and S(q,w) through the simple example of the ferromagnetic spin chain. Notice that the classical magnetic ground state of the Hamiltonian defined in this example is where every spin have the same direction, the direction is arbitrary since the Hamiltonian is isotropic. Files are found in ``HeisChain`` folder.
104
104
105
105
Crystal & magnetic structure
106
106
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -112,46 +112,41 @@ Using the lines below with the indicated files, the crystal and magnetic structu
112
112
ncell 1 1 100 System size (in terms of unit cells)
113
113
BC 0 0 P Boundary conditions (0=vacuum,P=periodic)
114
114
cell 1.00000 0.00000 0.00000
115
-
0.00000 1.00000 0.00000
116
-
0.00000 0.00000 1.00000
115
+
0.00000 1.00000 0.00000
116
+
0.00000 0.00000 1.00000
117
117
Sym 1 Symmetry of lattice (0 for no, 1 for cubic, 2 for 2d cubic, 3 for hexagonal)
118
118
119
119
posfile ./posfile Position file
120
120
exchange ./jfile Exchange file
121
121
momfile ./momfile Moment file
122
-
do_prnstruct 1 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
122
+
do_prnstruct 1 Flag to print lattice structure (0=off/1=on/2=print only coordinates)
123
+
124
+
Mensemble 1 Number of samples in ensemble averaging
125
+
Initmag 3 (1=random, 2=cone, 3=spec., 4=file)
123
126
124
127
.. figure:: figures/tutorial2/fig1.png
125
128
126
129
Fig 1. Crystal and magnetic texture.
127
130
128
-
Spin dynamics
129
-
^^^^^^^^^^^^^
131
+
**The first Brillouin zone of a simple cubic lattice**
130
132
131
-
Using the lines below, the systems is driven to the ground state by spin dynamics.
132
-
::
133
+
.. figure:: figures/tutorial2/fig3.png
133
134
134
-
Mensemble 1 Number of samples in ensemble averaging
135
-
Initmag 3 (1=random, 2=cone, 3=spec., 4=file)
135
+
Fig 3. Primitive and reciprocal lattice vectors in sc.
136
136
137
-
ip_mode S Initial phase parameters
138
-
ip_nphase 1
139
-
20000 1.0e-3 1e-16 4.0
137
+
.. figure:: figures/tutorial2/fig4.png
140
138
141
-
mode S S=SD, M=MC
142
-
temp 1.0e-3 Measurement phase parameters
143
-
damping 0.0010 --
144
-
Nstep 40000 --
145
-
timestep 1.000e-15 --
139
+
Fig 4. SC 1st Brillouin zone.
146
140
147
-
.. figure:: figures/tutorial2/fig2.png
141
+
.. figure:: figures/tutorial2/fig5.png
148
142
149
-
Fig 2. Energy versus number of iterations.
143
+
Fig 5. High symmetry points.
150
144
151
-
Spin wave spectrum
152
-
^^^^^^^^^^^^^^^^^^
153
145
154
-
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra) at the list of Q points (qfile). Use qmaker script.
146
+
Calculation of spin wave spectrum
147
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
148
+
149
+
We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon spectra) at the list of Q points contained in the ``qfile``. The spin wave spectra is calculated as excititions from the T=0 K ferromagnetic ground state.
155
150
156
151
::
157
152
@@ -161,53 +156,58 @@ We calculate the spin wave spectrum (in this case, a collinear adiabatic magnon
161
156
qpoints F Flag for q-point generation (F=file,A=automatic,C=full cell)
162
157
qfile ./qfile Path along the high symmetry points in the reciprocal space
163
158
164
-
**The first Brilluoin zone of a simple cubic lattice**
165
-
166
-
.. figure:: figures/tutorial2/fig3.png
167
-
168
-
Fig 3. Primitive and reciprocal lattice vectors in sc.
169
159
170
-
.. figure:: figures/tutorial2/fig4.png
171
-
172
-
Fig 4. SC 1st Brilluoin zone.
173
-
174
-
.. figure:: figures/tutorial2/fig5.png
175
-
176
-
Fig 5. High symmetry points.
177
-
178
-
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
160
+
Spin dynamics
161
+
^^^^^^^^^^^^^
182
162
183
-
.. figure:: figures/tutorial2/fig6.png
163
+
Using the lines below, the systems is equilibrated in spin dynamics simulations to be in thermal equilibrium with a small temperature T=0.001 K.
164
+
::
184
165
185
-
Fig 6. Adiabatic magnon spectra.
166
+
ip_mode S Initial phase parameters
167
+
ip_nphase 1
168
+
20000 1.0e-3 1e-16 4.0
186
169
187
-
Plotting S(q,w)
188
-
^^^^^^^^^^^^^^^
170
+
.. figure:: figures/tutorial2/fig2.png
189
171
190
-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
172
+
Fig 2. Energy versus number of iterations.
191
173
174
+
The dynamical structure factor is sampled in spin dynamics simulation at the same temperature T=0.001 K as used in the initial phase used to thermalize the system. The time step is 1 fs, and a small damping 0.0010 is used.
192
175
::
193
176
177
+
mode S S=SD, M=MC
178
+
temp 1.0e-3 Measurement phase parameters
179
+
damping 0.0010 --
180
+
Nstep 40000 --
181
+
timestep 1.000e-15 --
182
+
183
+
do_sc Q Measure spin correlation
184
+
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
194
185
do_sc Q Measure spin correlation
195
186
sc_window_fun 2 Choice of FFT window function (1=box, 2=Hann, 3=Hamming, 4=Blackman-Harris)
196
187
sc_nstep 5000 Number of steps to sample
197
188
sc_step 8 Number of time steps between each sampling
198
189
199
190
191
+
Plotting adiabatic magnon spectrum spectra and the dynamic structure factor
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
295
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
312
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w) or option 3 for S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
313
313
314
314
::
315
315
@@ -329,7 +329,7 @@ Questions and exercises:
329
329
2. Calculate analytically the Energy/spin and show it is the same as the numerical result.
330
330
331
331
332
-
Tutorial 4: FM Heisenberg nearest-neighbour spin chain with DM interactions
332
+
Exercise 4: FM Heisenberg nearest-neighbour spin chain with DM interactions
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
421
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 2. File to print out “ams.HeisWire.out”.
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS and option 5 S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
438
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS and option 5 S(q,w) with AMS. File to print out “sqw.HeisWire.out”.
439
439
440
440
::
441
441
@@ -454,7 +454,7 @@ Questions and exercises:
454
454
455
455
456
456
457
-
Tutorial 5: Kagome system with DM interactions
457
+
Exercise 5: Kagome system with DM interactions
458
458
----------------------------------------------
459
459
460
460
Non-Collinear adiabatic magnon spectra and S(q,w)
@@ -522,16 +522,16 @@ We calculate the non-collinear spin wave spectrum (in this case, a collinear adi
522
522
file with direct coordinates)
523
523
qfile ./qfile Path along the high symmetry points in the reciprocal space
524
524
525
-
**The first Brilluoin zone of a hexagonal lattice**
525
+
**The first Brillouin zone of a hexagonal lattice**
526
526
527
527
.. figure:: figures/tutorial5/fig2.png
528
528
529
-
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brilluoin zone and High symmetry points.
529
+
Fig 2. Primitive and reciprocal lattice vectors in hcp with 1st Brillouin zone and High symmetry points.
530
530
531
531
Plotting adiabatic magnon spectrum in the framework of Linear Spin Wave Theory
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 4. File to print out “ncams.kagome_T.out”.
534
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 4. File to print out “ncams.kagome_T.out”.
535
535
536
536
.. figure:: figures/tutorial5/fig3.png
537
537
@@ -540,7 +540,7 @@ Fig 3. Non-Collinear AMS.
540
540
Plotting S(q,w)
541
541
^^^^^^^^^^^^^^^
542
542
543
-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS. File to print out “ncams.kagome_T.out” and “sqw.kagome_T.out”.
543
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 4 for S(q,w) with NC_AMS. File to print out “ncams.kagome_T.out” and “sqw.kagome_T.out”.
544
544
545
545
::
546
546
@@ -568,7 +568,7 @@ Questions and exercises:
568
568
2. Seems linear around Gamma point but J is FM? Why is that? Shouldn´t be parabolic?
569
569
570
570
571
-
Tutorial 6: Triangular system with AFM interactions
571
+
Exercise 6: Triangular system with AFM interactions
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 7. File to print out “ncams.kagome_T.out”, “ncams+q.triang_T.out” and “ncams-q.triang_T.out”
662
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 7. File to print out “ncams.kagome_T.out”, “ncams+q.triang_T.out” and “ncams-q.triang_T.out”
663
663
664
664
.. figure:: figures/tutorial6/fig3.png
665
665
@@ -668,7 +668,7 @@ Fig 3. Non-Collinear AMS.
668
668
Plotting S(q,w)
669
669
^^^^^^^^^^^^^^^
670
670
671
-
Use the UppASD graphical interface (ASDGUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 6 for S(q,w) with NC_AMS+Q. File to print out “ncams.kagome_T.out”, “sqw.kagome_T.out”,” ncams+q.triang_T.out” and “ncams-q.triang_T.out”.
671
+
Use the UppASD graphical interface (ASD_GUI) or the script enclosed in this course (plotsqw_course). Use option 1 for S(q,w), option 6 for S(q,w) with NC_AMS+Q. File to print out “ncams.kagome_T.out”, “sqw.kagome_T.out”,” ncams+q.triang_T.out” and “ncams-q.triang_T.out”.
672
672
673
673
::
674
674
@@ -713,7 +713,7 @@ Eq 4. Excitation energy for spin waves in an isotropic antiferromagnet.
713
713
Eq 5. Excitation energy for spin waves in an isotropic ferromagnet.
714
714
715
715
716
-
Tutorial 7: Spin wave stiffness
716
+
Exercise 7: Spin wave stiffness
717
717
-------------------------------
718
718
719
719
The spin wave stiffness and the related property exchange stiffness provides the bridge between atomistic spin dynamics and micromagnetism.
0 commit comments