Chongjie Ye1,2*,
Yushuang Wu2*,
Ziteng Lu1,
Jiahao Chang1,
Xiaoyang Guo2,
Jiaqing Zhou2,
Hao Zhao3,
Xiaoguang Han1#
1The Chinese University of Hong Kong, Shenzhen,
2ByteDance,
3AIR, Tsinghua University
Hi3DGen target at generating high-fidelity 3D geometry from images using normal maps as an intermediate representation. The framework addresses limitations in existing methods that struggle to reproduce fine-grained geometric details from 2D inputs.
Clone the repo:
git clone --recursive https://github.com/ByteDance/Hi3DGen.git
cd Hi3DGen
Create a conda environment (optional):
conda create -n stablex python=3.10
conda activate stablex
Install dependencies:
# pytorch (select correct CUDA version)
pip install torch==2.4.0 torchvision==0.19.0 --index-url https://download.pytorch.org/whl/{your-cuda-version}
pip install spconv-cu{your-cuda-version}==2.3.6 xformers==0.0.27.post2
# other dependencies
pip install -r requirements.txt
Run by:
python app.py
If you find this work helpful, please consider citing our paper:
@article{ye2025hi3dgen,
title={Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging},
author={Ye, Chongjie and Wu, Yushuang and Lu, Ziteng and Chang, Jiahao and Guo, Xiaoyang and Zhou, Jiaqing and Zhao, Hao and Han, Xiaoguang},
journal={arXiv preprint arXiv:2503.22236},
year={2025}
}