Skip to content

OptimalSteps scheduler improvements #7801

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 40 additions & 14 deletions comfy_extras/nodes_optimalsteps.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
# from https://github.com/bebebe666/OptimalSteps


import numpy as np
import torch


def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
Expand All @@ -18,39 +18,65 @@ def loglinear_interp(t_steps, num_steps):
return interped_ys


NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
}
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001], "Wan": [1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001], "SDXL": [12.1769, 9.9182, 7.0887, 4.5944, 2.2473, 0.9020, 0.2872, 0.0738, 0.0197, 0.0020, 0.001]}


class OptimalStepsScheduler:

@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["FLUX", "Wan"], ),
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
return {
"required": {
"model_type": (["FLUX", "Wan", "SDXL"], ),
"steps": ("INT", {
"default": 20,
"min": 1,
"max": 1000
}),
"denoise": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01
}),
},
"optional": {
"custom_sigmas": ("STRING", {
"default": "",
"placeholder": "Comma-separated sigma values"
}),
}
}

RETURN_TYPES = ("SIGMAS", )
CATEGORY = "sampling/custom_sampling/schedulers"

FUNCTION = "get_sigmas"

def get_sigmas(self, model_type, steps, denoise):
def get_sigmas(self, model_type, steps, denoise, custom_sigmas=""):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
return (torch.FloatTensor([]), )
total_steps = round(steps * denoise)

sigmas = NOISE_LEVELS[model_type][:]
if custom_sigmas:
# Parse the custom_sigmas string into a list of floats
try:
sigmas = [float(s.strip()) for s in custom_sigmas.split(",") if s.strip()]
except ValueError:
raise ValueError("Invalid custom_sigmas format. Ensure it is a comma-separated list of numbers.")
else:
# Use the predefined NOISE_LEVELS
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)

sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )


NODE_CLASS_MAPPINGS = {
"OptimalStepsScheduler": OptimalStepsScheduler,
}