Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 68 additions & 27 deletions predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
from unet import UNet
from utils.utils import plot_img_and_mask


# for predicting single PIL image
def predict_img(net,
full_img,
device,
Expand All @@ -33,6 +35,27 @@ def predict_img(net,
return mask[0].long().squeeze().numpy()


# for predicting batch of nd.array images
def predict_imgs(net,
image_arrays,
device,
scale_factor=1,
out_threshold=0.5):
net.eval()
img = torch.from_numpy(image_arrays)
img = img.to(device=device, dtype=torch.float32)

with torch.no_grad():
output = net(img).cpu()
if net.n_classes > 1:
mask = output.argmax(dim=1)
else:
mask = torch.sigmoid(output) > out_threshold

return mask.long().squeeze().numpy()



def get_args():
parser = argparse.ArgumentParser(description='Predict masks from input images')
parser.add_argument('--model', '-m', default='MODEL.pth', metavar='FILE',
Expand Down Expand Up @@ -80,38 +103,56 @@ def mask_to_image(mask: np.ndarray, mask_values):
args = get_args()
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')

in_files = args.input
out_files = get_output_filenames(args)
image_in_file = False
if image_in_file:
in_files = args.input
out_files = get_output_filenames(args)

net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)
net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Loading model {args.model}')
logging.info(f'Using device {device}')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Loading model {args.model}')
logging.info(f'Using device {device}')

net.to(device=device)
state_dict = torch.load(args.model, map_location=device)
mask_values = state_dict.pop('mask_values', [0, 1])
net.load_state_dict(state_dict)
net.to(device=device)
state_dict = torch.load(args.model, map_location=device)
mask_values = state_dict.pop('mask_values', [0, 1])
net.load_state_dict(state_dict)

logging.info('Model loaded!')
logging.info('Model loaded!')

for i, filename in enumerate(in_files):
logging.info(f'Predicting image {filename} ...')
img = Image.open(filename)
for i, filename in enumerate(in_files):
logging.info(f'Predicting image {filename} ...')
img = Image.open(filename)

mask = predict_img(net=net,
full_img=img,
scale_factor=args.scale,
out_threshold=args.mask_threshold,
device=device)
mask = predict_img(net=net,
full_img=img,
scale_factor=args.scale,
out_threshold=args.mask_threshold,
device=device)

if not args.no_save:
out_filename = out_files[i]
result = mask_to_image(mask, mask_values)
result.save(out_filename)
logging.info(f'Mask saved to {out_filename}')
if not args.no_save:
out_filename = out_files[i]
result = mask_to_image(mask, mask_values)
result.save(out_filename)
logging.info(f'Mask saved to {out_filename}')

if args.viz:
logging.info(f'Visualizing results for image {filename}, close to continue...')
plot_img_and_mask(img, mask)
if args.viz:
logging.info(f'Visualizing results for image {filename}, close to continue...')
plot_img_and_mask(img, mask)
else:
batch_size = 128

net = torch.hub.load('milesial/Pytorch-UNet', 'unet_carvana', pretrained=True, scale=1.0)
device = torch.device('cpu' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
net.to(device=device)
mask_values = [0, 1]

image_arrays = np.random.rand(batch_size, 3, 112, 112)
mask_arrays = predict_imgs(net=net,
image_arrays=image_arrays,
scale_factor=args.scale,
out_threshold=args.mask_threshold,
device=device)
print(mask_arrays.shape)