Skip to content

Pragmatic AI Labs MCP Agent Toolkit - An MCP Server designed to make code with agents more deterministic

Notifications You must be signed in to change notification settings

paiml/paiml-mcp-agent-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PAIML MCP Agent Toolkit (pmat)

Crates.io npm Docker Homebrew AUR Chocolatey

Documentation CI/CD Quality Gate Multi-Ecosystem Release

MCP Compatible License: MIT Downloads Rust 1.80+

Zero-configuration AI context generation system with extreme quality enforcement and Toyota Way standards. Analyze any codebase instantly through CLI, MCP, or HTTP interfaces. Built by Pragmatic AI Labs.

🎉 v2.12.0 Release: Enhanced Ruchy Analysis! Advanced analysis capabilities for the Ruchy programming language:

  • 🧮 Halstead Metrics: Volume, difficulty, effort, time, and bug estimations
  • 💀 Dead Code Detection: Unused functions and variables identification
  • 🎯 Type Inference: Automatic type analysis for literals and operations
  • 🎭 Actor Analysis: Message flow tracking and deadlock detection
  • 🌟 Pattern Matching: Enhanced complexity scoring for match expressions
  • 📦 Dependency Tracking: Import/export analysis with module relationships

🚀 v2.10.0: Claude Code Agent Mode - "Always Working" Achievement! Transform PMAT into a persistent background quality agent:

  • 🤖 Claude Code Integration: Native MCP server for seamless Claude Code integration
  • 💾 Persistent State: Monitoring state maintained across restarts with auto-save
  • ⚙️ Production Ready: Environment-specific configs for dev, prod, and CI/CD
  • 📊 Real-time Monitoring: Continuous quality tracking with file system watching
  • 🏗️ Service Architecture: Systemd deployment with health checks and auto-restart

🎯 v2.9.0: Universal Demo "Just Works" Achievement! Complete AI-powered repository intelligence with multi-language analysis:

  • 🤖 AI-Powered Recommendations: Framework-aware repository recommendations with complexity-based learning tiers
  • 🌍 Multi-Language Intelligence: Advanced polyglot analysis with cross-language dependency detection
  • 🏛️ Architecture Pattern Recognition: Microservices, Layered, Event-driven pattern detection with confidence scoring
  • 📚 Repository Showcase Gallery: Curated collection of 8+ repositories across languages and complexity levels
  • ⚡ Universal Demo: Any GitHub repository URL → Complete analysis with AI recommendations
  • 🌐 Enhanced Web Demo: Interactive visualizations with 3 new API endpoints (/api/recommendations, /api/polyglot, /api/showcase)
  • Toyota Way Excellence: Zero compilation defects maintained throughout development

🚀 Quick Start

Installation

Choose your preferred installation method - PMAT is available across all major package ecosystems:

🦀 Rust (Recommended)

cargo install pmat

📦 Package Managers

# macOS/Linux - Homebrew
brew install pmat

# Windows - Chocolatey  
choco install pmat

# Ubuntu/Debian - APT
sudo apt install pmat                    # (via PPA - coming soon)

# Arch Linux - AUR
yay -S pmat

# Node.js - npm (global)
npm install -g pmat-agent

🐳 Docker

# Latest version
docker run --rm -v $(pwd):/workspace paiml/pmat:latest pmat --version

# Interactive analysis
docker run --rm -v $(pwd):/workspace -w /workspace paiml/pmat:latest pmat context

🔧 From Source

git clone https://github.com/paiml/paiml-mcp-agent-toolkit
cd paiml-mcp-agent-toolkit
make build

📥 Direct Download

# Linux/macOS Quick Install
curl -sSfL https://raw.githubusercontent.com/paiml/paiml-mcp-agent-toolkit/master/scripts/install.sh | sh

# Windows PowerShell
# Download from: https://github.com/paiml/paiml-mcp-agent-toolkit/releases

Basic Usage

# Analyze current directory
pmat context

# Get complexity metrics
pmat analyze complexity --top-files 10

# Find technical debt
pmat analyze satd

# Run quality gates
pmat quality-gate --strict

# Start MCP server
pmat mcp

Universal Demo - "Just Works" Analysis

# Analyze any GitHub repository with AI recommendations
cargo run --example analyze_github_repo -- --url https://github.com/rust-lang/rust-clippy

# Compare multiple repositories across languages
cargo run --example compare_repos

# Run quality gates on GitHub repositories
cargo run --example quality_gate_github -- https://github.com/owner/repo

# Start interactive web demo
pmat demo --serve
# Then visit http://localhost:8080 for:
# • AI-powered repository recommendations
# • Multi-language project intelligence
# • Repository showcase gallery
# • Interactive analysis visualizations

Toyota Way Development (NEW)

# Setup quality enforcement (one-time)
make setup-quality

# Start development with quality checks
make dev

# Create quality-enforced commit
make commit

# Verify sprint quality
make sprint-close

🎯 Core Capabilities

Analysis Engine

  • Complexity Analysis: McCabe cyclomatic & cognitive complexity with AST precision
  • Dead Code Detection: Graph-based reachability analysis across 30+ languages
  • SATD Detection: Self-admitted technical debt with severity classification
  • Technical Debt Gradient: Multi-factor composite scoring with time-decay modeling
  • Deep Context Generation: Multi-dimensional analysis optimized for AI agents

🤖 AI-Powered Intelligence (NEW)

  • Smart Recommendations: Framework-aware repository suggestions with complexity matching
  • Polyglot Analysis: Cross-language dependency detection and architecture pattern recognition
  • Repository Showcase: Curated gallery with learning pathways from beginner to expert
  • Integration Points: Risk assessment of multi-language project coupling with mitigation strategies

Quality Systems

  • Quality Gates: Zero-tolerance enforcement (complexity ≤20, SATD=0, coverage >80%)
  • Quality Proxy: AI code interceptor with 7-stage validation pipeline
  • PDMT Integration: Deterministic todo generation with embedded quality requirements
  • Refactoring Engine: State machine-based code transformation with ACID snapshots

Integration Protocols

  • MCP Protocol: 18 tools via unified pmcp SDK 1.2.0 server
  • HTTP API: RESTful with Server-Sent Events streaming
  • CLI Interface: 47 commands with POSIX-compliant exit semantics

📖 Documentation

Core Documentation

Quality & Development

Integration Guides

🏗️ Architecture

PMAT implements Toyota Production System principles through rigorous static analysis:

  • Kaizen (改善): Iterative file-by-file improvement with measurable ΔQ metrics
  • Genchi Genbutsu (現地現物): Direct AST traversal, no heuristics
  • Jidoka (自働化): Automated quality gates with fail-fast semantics
  • Zero SATD Policy: Compile-time enforcement of zero technical debt

Service Architecture

// Unified service layer with dependency injection
pub trait Service: Send + Sync {
    type Input: Serialize + DeserializeOwned;
    type Output: Serialize + DeserializeOwned;
    
    async fn process(&self, input: Self::Input) -> Result<Self::Output, Self::Error>;
}

// All protocols use unified request/response
#[derive(Serialize, Deserialize)]
pub struct UnifiedRequest {
    pub operation: Operation,
    pub params: Value,
    pub context: RequestContext,
}

Performance Characteristics

  • Startup: 4ms hot, 127ms cold (mmap'd grammar cache)
  • Analysis: 487K LOC/s single-thread, 3.9M LOC/s multi-core
  • Memory: 47MB base + 312KB per KLOC
  • SIMD: 43% vectorized paths, 2.7x AVX2 speedup

🛠️ Development

Requirements

  • Rust 1.80.0+
  • Git (for repository analysis)

Build from Source

git clone https://github.com/paiml/paiml-mcp-agent-toolkit
cd paiml-mcp-agent-toolkit

# Setup Toyota Way quality enforcement
make setup-quality

# Build and test
make build
make validate

# Run examples
make examples

Library Usage

[dependencies]
pmat = "2.5"
use pmat::services::code_analysis::CodeAnalysisService;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let service = CodeAnalysisService::new();
    
    // Generate AI-optimized context
    let context = service.generate_context(".", None).await?;
    
    // Analyze complexity with Toyota Way standards
    let complexity = service.analyze_complexity(".", Some(10)).await?;
    
    Ok(())
}

🔍 Language Support

  • Rust: Full cargo integration with syn AST
  • TypeScript/JavaScript: SWC-based parsing
  • Python: RustPython AST analysis
  • C/C++: Tree-sitter with goto tracking
  • Ruchy: v1.5.0 support with advanced analysis
    • Full AST parsing with 35+ token types
    • Halstead metrics (volume, difficulty, effort, time, bugs)
    • Dead code detection (unused functions/variables)
    • Type inference for literals and binary operations
    • Actor message flow analysis with deadlock detection
    • Enhanced pattern matching complexity scoring
    • Import/export dependency tracking
  • Kotlin: Tree-sitter based analysis
  • 30+ Languages: Via tree-sitter grammar support

🤖 MCP Integration

PMAT provides 18 MCP tools via unified pmcp SDK server:

# Start MCP server (auto-detects transport)
pmat mcp

# Test with Claude Code
cargo run --example mcp_server_pmcp
cargo run --example test_pmcp_server

Available Tools

  • analyze_complexity - Complexity metrics
  • analyze_satd - Technical debt detection
  • analyze_dead_code - Unused code analysis
  • quality_gate - Comprehensive quality validation
  • refactor_start - Begin refactoring workflow
  • pdmt_deterministic_todos - Generate quality todos
  • github_create_issue - Create GitHub issues
  • NEW: AI recommendation tools for intelligent repository analysis
  • And 11 more...

🤖 Claude Code Agent Mode (NEW v2.10.0)

Transform PMAT into a persistent background quality agent that continuously monitors your codebase:

Quick Start with Claude Code

# Start agent as MCP server for Claude Code
pmat agent mcp-server

# Configure in Claude Code settings.json:
{
  "mcpServers": {
    "pmat": {
      "command": "pmat",
      "args": ["agent", "mcp-server"],
      "env": {}
    }
  }
}

Background Daemon Mode

# Start monitoring a project
pmat agent start --project-path /path/to/project

# Check monitoring status
pmat agent status

# Stop monitoring
pmat agent stop

Key Features

  • Real-time Monitoring: File system watching with instant quality feedback
  • Persistent State: Maintains metrics across restarts with auto-save
  • Toyota Way Compliance: Enforces ≤20 complexity with zero SATD tolerance
  • Production Ready: Systemd service with health checks and auto-restart
  • MCP Native: Seamless Claude Code integration via stdio transport

Available Agent Tools

  • start_quality_monitoring - Begin monitoring a project
  • stop_quality_monitoring - Stop monitoring
  • get_quality_status - Current quality metrics
  • run_quality_gates - Execute quality checks
  • analyze_complexity - Complexity analysis
  • health_check - Agent health status

See Claude Code Agent Guide for detailed setup and deployment instructions.

🌐 Web Demo API Endpoints (NEW)

# AI-powered repository recommendations
GET /api/recommendations

# Multi-language project intelligence
GET /api/polyglot

# Repository showcase gallery
GET /api/showcase

# Core analysis APIs
GET /api/summary
GET /api/metrics
GET /api/hotspots
GET /api/dag

📊 Quality Standards

PMAT enforces extreme quality standards:

  • Complexity: ≤20 cyclomatic, ≤15 cognitive
  • Technical Debt: 0 SATD comments allowed
  • Test Coverage: >80% with property-based testing
  • Code Quality: 0 lint warnings, 0 dead code
  • Documentation: Synchronized with every commit

Quality Gates

# Run comprehensive quality analysis
pmat quality-gate --strict

# CI/CD integration
pmat analyze complexity --fail-on-violation
pmat analyze satd --fail-on-violation
pmat quality-gate --strict --fail-on-violation

🚀 Contributing

PMAT follows Toyota Way development principles:

  1. Setup quality enforcement: make setup-quality
  2. Start development: make dev
  3. Make changes with documentation updates
  4. Quality-enforced commit: make commit
  5. Sprint verification: make sprint-close

All contributions must meet:

  • Zero SATD comments
  • Complexity ≤20 per function
  • Full test coverage
  • Documentation updates

See CONTRIBUTING.md for detailed guidelines.

📋 License

Licensed under the MIT License. See LICENSE for details.

Built with ❤️ by Pragmatic AI Labs