Skip to content

Commit 6b9e746

Browse files
committed
Removing math aligned environment.
1 parent eed725b commit 6b9e746

File tree

1 file changed

+15
-4
lines changed

1 file changed

+15
-4
lines changed

source/docs/programming_and_computer_usage/complexity.md

Lines changed: 15 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -62,10 +62,21 @@ There are additionaly some very useful [properties of the big O notation](https:
6262
- Composition rule: $f(n) = O(g(n))$ and $g(n) = O(h(n))$ implies $f(g(n)) = O(h(n))$.
6363

6464
$$
65-
\begin{align*}
66-
f(n) & = O(f(n)) \tag{Reflexivity}\\
67-
f(n) & = O(f(n)) \text{Reflexivity}
68-
\end{align*}
65+
\begin{aligned}
66+
f(n) & = O(f(n)) && \text{Reflexivity}\\
67+
f(n) & = O(f(n)) && \text{Reflexivity}
68+
\end{aligned}
69+
$$
70+
71+
$$
72+
\begin{array}{rll}
73+
E \psi &= H\psi & \text{Expanding the Hamiltonian Operator} \\
74+
&= -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} \psi + \frac{1}{2}m\omega x^2 \psi & \text{Using the ansatz $\psi(x) = e^{-kx^2}f(x)$, hoping to cancel the $x^2$ term} \\
75+
&= -\frac{\hbar^2}{2m} [4k^2x^2f(x)+2(-2kx)f'(x) + f''(x)]e^{-kx^2} + \frac{1}{2}m\omega x^2 f(x)e^{-kx^2} &\text{Removing the $e^{-kx^2}$ term from both sides} \\
76+
& \Downarrow \\
77+
Ef(x) &= -\frac{\hbar^2}{2m} [4k^2x^2f(x)-4kxf'(x) + f''(x)] + \frac{1}{2}m\omega x^2 f(x) & \text{Choosing $k=\frac{im}{2}\sqrt{\frac{\omega}{\hbar}}$ to cancel the $x^2$ term, via $-\frac{\hbar^2}{2m}4k^2=\frac{1}{2}m \omega$} \\
78+
&= -\frac{\hbar^2}{2m} [-4kxf'(x) + f''(x)] \\
79+
\end{array}
6980
$$
7081

7182
<!--

0 commit comments

Comments
 (0)