You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
E \psi &= H\psi & \text{Expanding the Hamiltonian Operator} \\
74
+
&= -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} \psi + \frac{1}{2}m\omega x^2 \psi & \text{Using the ansatz $\psi(x) = e^{-kx^2}f(x)$, hoping to cancel the $x^2$ term} \\
75
+
&= -\frac{\hbar^2}{2m} [4k^2x^2f(x)+2(-2kx)f'(x) + f''(x)]e^{-kx^2} + \frac{1}{2}m\omega x^2 f(x)e^{-kx^2} &\text{Removing the $e^{-kx^2}$ term from both sides} \\
76
+
& \Downarrow \\
77
+
Ef(x) &= -\frac{\hbar^2}{2m} [4k^2x^2f(x)-4kxf'(x) + f''(x)] + \frac{1}{2}m\omega x^2 f(x) & \text{Choosing $k=\frac{im}{2}\sqrt{\frac{\omega}{\hbar}}$ to cancel the $x^2$ term, via $-\frac{\hbar^2}{2m}4k^2=\frac{1}{2}m \omega$} \\
0 commit comments