Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 30 additions & 6 deletions econml/metalearners/_metalearners.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def fit(self, Y, T, *, X, inference=None):
self.models[ind].fit(X[T == ind], Y[T == ind])

def const_marginal_effect(self, X):
"""Calculate the constant marignal treatment effect on a vector of features for each sample.
"""Calculate the constant marginal treatment effect on a vector of features for each sample.

Parameters
----------
Expand All @@ -127,7 +127,14 @@ def const_marginal_effect(self, X):
X = check_array(X)
taus = []
for ind in range(self._d_t[0]):
taus.append(self.models[ind + 1].predict(X) - self.models[0].predict(X))
if (
hasattr(self.models[ind + 1], 'predict_proba') and
hasattr(self.models[0], 'predict_proba')
):
taus.append(self.models[ind + 1].predict_proba(X)[:, 1] - self.models[0].predict_proba(X)[:, 1])
else:
taus.append(self.models[ind + 1].predict(X) - self.models[0].predict(X))

taus = np.column_stack(taus).reshape((-1,) + self._d_t + self._d_y) # shape as of m*d_t*d_y
if self._d_y:
taus = transpose(taus, (0, 2, 1)) # shape as of m*d_y*d_t
Expand Down Expand Up @@ -242,7 +249,12 @@ def const_marginal_effect(self, X=None):
X = check_array(X)
Xs, Ts = broadcast_unit_treatments(X, self._d_t[0] + 1)
feat_arr = np.concatenate((Xs, Ts), axis=1)
prediction = self.overall_model.predict(feat_arr).reshape((-1, self._d_t[0] + 1,) + self._d_y)

if hasattr(self.overall_model, 'predict_proba'):
prediction = self.overall_model.predict_proba(feat_arr)[:, 1].reshape((-1, self._d_t[0] + 1,) + self._d_y)
else:
prediction = self.overall_model.predict(feat_arr).reshape((-1, self._d_t[0] + 1,) + self._d_y)

if self._d_y:
prediction = transpose(prediction, (0, 2, 1))
taus = (prediction - np.repeat(prediction[:, :, 0], self._d_t[0] + 1).reshape(prediction.shape))[:, :, 1:]
Expand Down Expand Up @@ -393,8 +405,17 @@ def const_marginal_effect(self, X):
taus = []
for ind in range(self._d_t[0]):
propensity_scores = self.propensity_models[ind].predict_proba(X)[:, 1:]
tau_hat = propensity_scores * self.cate_controls_models[ind].predict(X).reshape(m, -1) \
+ (1 - propensity_scores) * self.cate_treated_models[ind].predict(X).reshape(m, -1)

if (
hasattr(self.cate_controls_models[ind], 'predict_proba') and
hasattr(self.cate_treated_models[ind], 'predict_proba')
):
tau_hat = propensity_scores * self.cate_controls_models[ind].predict_proba(X)[:, 1].reshape(m, -1) \
+ (1 - propensity_scores) * self.cate_treated_models[ind].predict_proba(X)[:, 1].reshape(m, -1)
else:
tau_hat = propensity_scores * self.cate_controls_models[ind].predict(X).reshape(m, -1) \
+ (1 - propensity_scores) * self.cate_treated_models[ind].predict(X).reshape(m, -1)

taus.append(tau_hat)
taus = np.column_stack(taus).reshape((-1,) + self._d_t + self._d_y) # shape as of m*d_t*d_y
if self._d_y:
Expand Down Expand Up @@ -549,7 +570,10 @@ def const_marginal_effect(self, X):
X = check_array(X)
taus = []
for model in self.final_models:
taus.append(model.predict(X))
if hasattr(model, 'predict_proba'):
taus.append(model.predict_proba(X)[:, 1])
else:
taus.append(model.predict(X))
taus = np.column_stack(taus).reshape((-1,) + self._d_t + self._d_y) # shape as of m*d_t*d_y
if self._d_y:
taus = transpose(taus, (0, 2, 1)) # shape as of m*d_y*d_t
Expand Down