Skip to content

change use of measurements to records in tomography #7421

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 10 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 13 additions & 6 deletions cirq-core/cirq/experiments/qubit_characterizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
# this is for older systems with matplotlib <3.2 otherwise 3d projections fail
from scipy.optimize import curve_fit


import cirq.vis.heatmap as cirq_heatmap
import cirq.vis.histogram as cirq_histogram
from cirq import circuits, ops, protocols
Expand Down Expand Up @@ -527,18 +528,24 @@ def single_qubit_state_tomography(
Returns:
A TomographyResult object that stores and plots the density matrix.
"""
circuit_z = circuit + circuits.Circuit(ops.measure(qubit, key='z'))
keys = protocols.measurement_key_names(circuit)
tomo_key = "tomo_key"
while tomo_key in keys:
tomo_key = f"tomo_key{uuid.uuid4().hex}"

circuit_z = circuit + circuits.Circuit(ops.measure(qubit, key=tomo_key))

results = sampler.run(circuit_z, repetitions=repetitions)
rho_11 = np.mean(results.measurements['z'])
rho_11 = np.mean(results.records[tomo_key][:, -1, :])
rho_00 = 1.0 - rho_11

circuit_x = circuits.Circuit(circuit, ops.X(qubit) ** 0.5, ops.measure(qubit, key='z'))
circuit_x = circuits.Circuit(circuit, ops.X(qubit) ** 0.5, ops.measure(qubit, key=tomo_key))
results = sampler.run(circuit_x, repetitions=repetitions)
rho_01_im = np.mean(results.measurements['z']) - 0.5
rho_01_im = np.mean(results.records[tomo_key][:, -1, :]) - 0.5

circuit_y = circuits.Circuit(circuit, ops.Y(qubit) ** -0.5, ops.measure(qubit, key='z'))
circuit_y = circuits.Circuit(circuit, ops.Y(qubit) ** -0.5, ops.measure(qubit, key=tomo_key))
results = sampler.run(circuit_y, repetitions=repetitions)
rho_01_re = 0.5 - np.mean(results.measurements['z'])
rho_01_re = 0.5 - np.mean(results.records[tomo_key][:, -1, :])

rho_01 = rho_01_re + 1j * rho_01_im
rho_10 = np.conj(rho_01)
Expand Down
22 changes: 15 additions & 7 deletions cirq-core/cirq/experiments/qubit_characterizations_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,24 +152,32 @@ def test_two_qubit_randomized_benchmarking():
def test_single_qubit_state_tomography():
# Check that the density matrices of the output states of X/2, Y/2 and
# H + Y gates closely match the ideal cases.
# checks that unique tomography keys are generated
simulator = sim.Simulator()
qubit = GridQubit(0, 0)
q_0 = GridQubit(0, 0)
q_1 = GridQubit(0, 1)

circuit_1 = circuits.Circuit(ops.X(qubit) ** 0.5)
circuit_2 = circuits.Circuit(ops.Y(qubit) ** 0.5)
circuit_3 = circuits.Circuit(ops.H(qubit), ops.Y(qubit))
circuit_1 = circuits.Circuit(ops.X(q_0) ** 0.5)
circuit_2 = circuits.Circuit(ops.Y(q_0) ** 0.5)
circuit_3 = circuits.Circuit(ops.H(q_0), ops.Y(q_0))
circuit_4 = circuits.Circuit(
ops.H(q_0), ops.Y(q_0), cirq.measure(q_1, key='z')
)

act_rho_1 = single_qubit_state_tomography(simulator, qubit, circuit_1, 1000).data
act_rho_2 = single_qubit_state_tomography(simulator, qubit, circuit_2, 1000).data
act_rho_3 = single_qubit_state_tomography(simulator, qubit, circuit_3, 1000).data
act_rho_1 = single_qubit_state_tomography(simulator, q_0, circuit_1, 1000).data
act_rho_2 = single_qubit_state_tomography(simulator, q_0, circuit_2, 1000).data
act_rho_3 = single_qubit_state_tomography(simulator, q_0, circuit_3, 1000).data
act_rho_4 = single_qubit_state_tomography(simulator, q_0, circuit_4, 1000).data

tar_rho_1 = np.array([[0.5, 0.5j], [-0.5j, 0.5]])
tar_rho_2 = np.array([[0.5, 0.5], [0.5, 0.5]])
tar_rho_3 = np.array([[0.5, -0.5], [-0.5, 0.5]])
tar_rho_4 = np.array([[0.5, -0.5], [-0.5, 0.5]])

np.testing.assert_almost_equal(act_rho_1, tar_rho_1, decimal=1)
np.testing.assert_almost_equal(act_rho_2, tar_rho_2, decimal=1)
np.testing.assert_almost_equal(act_rho_3, tar_rho_3, decimal=1)
np.testing.assert_almost_equal(act_rho_4, tar_rho_4, decimal=1)


def test_two_qubit_state_tomography():
Expand Down
Loading